Locus-specific editing of histone modifications at endogenous enhancers

Eric M. Mendenhall, Kaylyn E. Williamson, Deepak Reyon, James Y. Zou, Oren Ram, J. Keith Joung, Bradley E. Bernstein

Research output: Contribution to journalArticlepeer-review

Abstract

Mammalian gene regulation is dependent on tissue-specific enhancers that can act across large distances to influence transcriptional activity. Mapping experiments have identified hundreds of thousands of putative enhancers whose functionality is supported by cell type-specific chromatin signatures and striking enrichments for disease-associated sequence variants. However, these studies did not address the in vivo functions of the putative elements or their chromatin states and did not determine which genes, if any, a given enhancer regulates. Here we present a strategy to investigate endogenous regulatory elements by selectively altering their chromatin state using programmable reagents. Transcription activator-like (TAL) effector repeat domains fused to the LSD1 histone demethylase efficiently remove enhancer-associated chromatin modifications from target loci, without affecting control regions. We find that inactivation of enhancer chromatin by these fusion proteins frequently causes downregulation of proximal genes, revealing enhancer target genes. Our study demonstrates the potential of epigenome editing tools to characterize an important class of functional genomic elements.

Original languageEnglish
Pages (from-to)1133-1136
Number of pages4
JournalNature biotechnology
Volume31
Issue number12
DOIs
StatePublished - Dec 2013
Externally publishedYes

All Science Journal Classification (ASJC) codes

  • Biotechnology
  • Bioengineering
  • Applied Microbiology and Biotechnology
  • Molecular Medicine
  • Biomedical Engineering

Fingerprint

Dive into the research topics of 'Locus-specific editing of histone modifications at endogenous enhancers'. Together they form a unique fingerprint.

Cite this