Local heat transfer dependency on thermal boundary condition in ribbed cooling channel geometries

B. Cukurel, T. Arts

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

Abstract

The present study is geared towards quantifying the effects of imposed thermal boundary condition in cooling channel applications. In this regard, tests are conducted in a generic passage, with evenly distributed rib type perturbators at 90°, with a 30% passage blockage ratio and pitch-to-height ratio of 10. Uniform heat-flux is imposed on the external side of the slab which provides Biot number and solid-to-fluid thermal conductivity ratio around 1 and 600 respectively. Through infrared thermometry measurements over the wetted surface and via an energy balance within the solid, conjugate heat transfer coefficients are calculated over a single rib-pitch. The local heat extraction is demonstrated to be a strong function of the conduction effects, observed more dominantly in the rib vicinity. Moreover, the aero-thermal effects are investigated by comparing the findings with analogous aerodynamic literature, enabling heat transfer distributions to be associated with distinct flow structures. Furthermore, the results are contrasted with the iso-heat-flux wetted boundary condition test case. Neglecting the thermal boundary condition dependence, and thus the true thermal history of the boundary layer, is demonstrated to produce large errors in heat transfer predictions.

Original languageEnglish
Title of host publicationASME 2012 Heat Transfer Summer Conf. Collocated with the ASME 2012 Fluids Engineering Div. Summer Meeting and the ASME 2012 10th Int. Conf. on Nanochannels, Microchannels and Minichannels, HT 2012
Pages851-862
Number of pages12
DOIs
StatePublished - 2012
Externally publishedYes
EventASME 2012 Heat Transfer Summer Conference Collocated with the ASME 2012 Fluids Engineering Div. Summer Meeting and the ASME 2012 10th Int. Conf. on Nanochannels, Microchannels and Minichannels, HT 2012 - Rio Grande, Puerto Rico
Duration: 8 Jul 201212 Jul 2012

Publication series

NameASME 2012 Heat Transfer Summer Conf. Collocated with the ASME 2012 Fluids Engineering Div. Summer Meeting and the ASME 2012 10th Int. Conf. on Nanochannels, Microchannels and Minichannels, HT 2012
Volume1

Conference

ConferenceASME 2012 Heat Transfer Summer Conference Collocated with the ASME 2012 Fluids Engineering Div. Summer Meeting and the ASME 2012 10th Int. Conf. on Nanochannels, Microchannels and Minichannels, HT 2012
Country/TerritoryPuerto Rico
CityRio Grande
Period8/07/1212/07/12

All Science Journal Classification (ASJC) codes

  • Fluid Flow and Transfer Processes
  • Control and Systems Engineering
  • Electrical and Electronic Engineering
  • Mechanical Engineering
  • Condensed Matter Physics

Cite this