@inproceedings{3a83ff57698849ca8513bc387705dd16,
title = "Link prediction in social networks using computationally efficient topological features",
abstract = "Online social networking sites have become increasingly popular over the last few years. As a result, new interdisciplinary research directions have emerged in which social network analysis methods are applied to networks containing hundreds millions of users. Unfortunately, links between individuals may be missing due to imperfect acquirement processes or because they are not yet reflected in the online network (i.e., friends in realworld did not form a virtual connection.) Existing link prediction techniques lack the scalability required for full application on a continuously growing social network which may be adding everyday users with thousands of connections. The primary bottleneck in link prediction techniques is extracting structural features required for classifying links. In this paper we propose a set of simple, easy-to-compute structural features that can be analyzed to identify missing links. We show that a machine learning classifier trained using the proposed simple structural features can successfully identify missing links even when applied to a hard problem of classifying links between individuals who have at least one common friend. A new friends measure that we developed is shown to be a good predictor for missing links and an evaluation experiment was performed on five large social networks datasets: Facebook, Flickr, YouTube, Academia and TheMarker. Our methods can provide social network site operators with the capability of helping users to find known, offline contacts and to discover new friends online. They may also be used for exposing hidden links in an online social network.",
keywords = "Hiddenlinks, Link prediction, Social networks, Supervised learning",
author = "Michael Fire and Lena Tenenboim and Ofrit Lesser and Rami Puzis and Lior Rokach and Yuval Elovici",
year = "2011",
month = dec,
day = "1",
doi = "https://doi.org/10.1109/PASSAT/SocialCom.2011.20",
language = "American English",
isbn = "9780769545783",
series = "Proceedings - 2011 IEEE International Conference on Privacy, Security, Risk and Trust and IEEE International Conference on Social Computing, PASSAT/SocialCom 2011",
pages = "73--80",
booktitle = "Proceedings - 2011 IEEE International Conference on Privacy, Security, Risk and Trust and IEEE International Conference on Social Computing, PASSAT/SocialCom 2011",
note = "2011 IEEE International Conference on Privacy, Security, Risk and Trust, PASSAT 2011 and 2011 IEEE International Conference on Social Computing, SocialCom 2011 ; Conference date: 09-10-2011 Through 11-10-2011",
}