Linear completeness thresholds for bounded model checking

Daniel Kroening, Joël Ouaknine, Ofer Strichman, Thomas Wahl, James Worrell

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

Abstract

Bounded model checking is a symbolic bug-finding method that examines paths of bounded length for violations of a given LTL formula. Its rapid adoption in industry owes much to advances in SAT technology over the past 10-15 years. More recently, there have been increasing efforts to apply SAT-based methods to unbounded model checking. One such approach is based on computing a completeness threshold: a bound k such that, if no counterexample of length k or less to a given LTL formula is found, then the formula in fact holds over all infinite paths in the model. The key challenge lies in determining sufficiently small completeness thresholds. In this paper, we show that if the Büchi automaton associated with an LTL formula is cliquey, i.e., can be decomposed into clique-shaped strongly connected components, then the associated completeness threshold is linear in the recurrence diameter of the Kripke model under consideration. We moreover establish that all unary temporal logic formulas give rise to cliquey automata, and observe that this group includes a vast range of specifications used in practice, considerably strengthening earlier results, which report manageable thresholds only for elementary formulas of the form Fp and Gq .

Original languageEnglish
Title of host publicationComputer Aided Verification - 23rd International Conference, CAV 2011, Proceedings
Pages557-572
Number of pages16
DOIs
StatePublished - 2011
Event23rd International Conference on Computer Aided Verification, CAV 2011 - Snowbird, UT, United States
Duration: 14 Jul 201120 Jul 2011

Publication series

NameLecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
Volume6806 LNCS

Conference

Conference23rd International Conference on Computer Aided Verification, CAV 2011
Country/TerritoryUnited States
CitySnowbird, UT
Period14/07/1120/07/11

All Science Journal Classification (ASJC) codes

  • Theoretical Computer Science
  • General Computer Science

Fingerprint

Dive into the research topics of 'Linear completeness thresholds for bounded model checking'. Together they form a unique fingerprint.

Cite this