Limit theorems for Lévy walks in d dimensions: Rare and bulk fluctuations

Itzhak Fouxon, Sergey Denisov, Vasily Zaburdaev, Eli Barkai

Research output: Contribution to journalArticlepeer-review


We consider super-diffusive Lévy walks in d ≥ 2 dimensions when the duration of a single step, i.e. a ballistic motion performed by a walker, is governed by a power-law tailed distribution of infinite variance and finite mean. We demonstrate that the probability density function (PDF) of the coordinate of the random walker has two different scaling limits at large times. One limit describes the bulk of the PDF. It is the d-dimensional generalization of the one-dimensional Lévy distribution and is the counterpart of the central limit theorem (CLT) for random walks with finite dispersion. In contrast with the one-dimensional Lévy distribution and the CLT this distribution does not have a universal shape. The PDF reflects anisotropy of the single-step statistics however large the time is. The other scaling limit, the so-called 'infinite density', describes the tail of the PDF which determines second (dispersion) and higher moments of the PDF. This limit repeats the angular structure of the PDF of velocity in one step. A typical realization of the walk consists of anomalous diffusive motion (described by anisotropic d-dimensional Lévy distribution) interspersed with long ballistic flights (described by infinite density). The long flights are rare but due to them the coordinate increases so much that their contribution determines the dispersion. We illustrate the concept by considering two types of Lévy walks, with isotropic and 2 anisotropic distributions of velocities. Furthermore, we show that for isotropic but otherwise arbitrary velocity distributions the d-dimensional process can be reduced to a one-dimensional Lévy walk. We briefly discuss the consequences of non-universality for the d > 1 dimensional fractional diffusion equation, in particular the non-uniqueness of the fractional Laplacian.

Original languageEnglish
Article number154002
JournalJournal of Physics A: Mathematical and Theoretical
Issue number15
StatePublished - 14 Mar 2017


  • Lévy walks
  • central limit theorem
  • fractional Laplacian
  • fractional diffusion equation
  • infinite density
  • large deviations
  • random walk

All Science Journal Classification (ASJC) codes

  • Statistical and Nonlinear Physics
  • Statistics and Probability
  • Modelling and Simulation
  • Mathematical Physics
  • Physics and Astronomy(all)


Dive into the research topics of 'Limit theorems for Lévy walks in d dimensions: Rare and bulk fluctuations'. Together they form a unique fingerprint.

Cite this