Abstract
Constructing fast numerical solvers for partial differential equations (PDEs) is crucial for many scientific disciplines. A leading technique for solving large-scale PDEs is using multigrid methods. At the core of a multigrid solver is the prolongation matrix, which relates between different scales of the problem. This matrix is strongly problem-dependent, and its optimal construction is critical to the efficiency of the solver. In practice, however, devising multigrid algorithms for new problems often poses formidable challenges. In this paper we propose a framework for learning multigrid solvers. Our method learns a (single) mapping from a family of parameterized PDEs to prolongation operators. We train a neural network once for the entire class of PDEs, using an efficient and unsupervised loss function. Experiments on a broad class of 2D diffusion problems demonstrate improved convergence rates compared to the widely used Black-Box multigrid scheme, suggesting that our method successfully learned rules for constructing prolongation matrices.
Original language | English |
---|---|
Pages (from-to) | 2415-2423 |
Number of pages | 9 |
Journal | Proceedings of Machine Learning Research |
Volume | 97 |
State | Published - 2019 |
Event | 36th International Conference on Machine Learning, ICML 2019 - Long Beach, United States Duration: 9 Jun 2019 → 15 Jun 2019 |
All Science Journal Classification (ASJC) codes
- Education
- Computer Science Applications
- Human-Computer Interaction