TY - GEN
T1 - Learning Revenue Maximization Using Posted Prices for Stochastic Strategic Patient Buyers
AU - Mashiah, Eitan Hai
AU - Attias, Idan
AU - Mansour, Yishay
N1 - Publisher Copyright: Copyright © 2023, Association for the Advancement of Artificial Intelligence (www.aaai.org). All rights reserved.
PY - 2023/6/27
Y1 - 2023/6/27
N2 - We consider a seller faced with buyers which have the ability to delay their decision, which we call patience. Each buyer's type is composed of value and patience, and it is sampled i.i.d. from a distribution. The seller, using posted prices, would like to maximize her revenue from selling to the buyer. In this paper, we formalize this setting and characterize the resulting Stackelberg equilibrium, where the seller first commits to her strategy, and then the buyers best respond. Following this, we show how to compute both the optimal pure and mixed strategies. We then consider a learning setting, where the seller does not have access to the distribution over buyer's types. Our main results are the following. We derive a sample complexity bound for the learning of an approximate optimal pure strategy, by computing the fat-shattering dimension of this setting. Moreover, we provide a general sample complexity bound for the approximate optimal mixed strategy. We also consider an online setting and derive a vanishing regret bound with respect to both the optimal pure strategy and the optimal mixed strategy.
AB - We consider a seller faced with buyers which have the ability to delay their decision, which we call patience. Each buyer's type is composed of value and patience, and it is sampled i.i.d. from a distribution. The seller, using posted prices, would like to maximize her revenue from selling to the buyer. In this paper, we formalize this setting and characterize the resulting Stackelberg equilibrium, where the seller first commits to her strategy, and then the buyers best respond. Following this, we show how to compute both the optimal pure and mixed strategies. We then consider a learning setting, where the seller does not have access to the distribution over buyer's types. Our main results are the following. We derive a sample complexity bound for the learning of an approximate optimal pure strategy, by computing the fat-shattering dimension of this setting. Moreover, we provide a general sample complexity bound for the approximate optimal mixed strategy. We also consider an online setting and derive a vanishing regret bound with respect to both the optimal pure strategy and the optimal mixed strategy.
UR - http://www.scopus.com/inward/record.url?scp=85168254838&partnerID=8YFLogxK
M3 - Conference contribution
T3 - Proceedings of the 37th AAAI Conference on Artificial Intelligence, AAAI 2023
SP - 9090
EP - 9098
BT - AAAI-23 Technical Tracks 8
A2 - Williams, Brian
A2 - Chen, Yiling
A2 - Neville, Jennifer
T2 - 37th AAAI Conference on Artificial Intelligence, AAAI 2023
Y2 - 7 February 2023 through 14 February 2023
ER -