Learning from the hindsight plan - Episodic MPC improvement

Aviv Tamar, Garrett Thomas, Tianhao Zhang, Sergey Levine, Pieter Abbeel

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

Abstract

Model predictive control (MPC) is a popular control method that has proved effective for robotics, among other fields. MPC performs re-planning at every time step. Re-planning is done with a limited horizon per computational and real-time constraints and often also for robustness to potential model errors. However, the limited horizon leads to suboptimal performance. In this work, we consider the iterative learning setting, where the same task can be repeated several times, and propose a policy improvement scheme for MPC. The main idea is that between executions we can, offline, run MPC with a longer horizon, resulting in a hindsight plan. To bring the next real-world execution closer to the hindsight plan, our approach learns to re-shape the original cost function with the goal of satisfying the following property: short horizon planning (as realistic during real executions) with respect to the shaped cost should result in mimicking the hindsight plan. This effectively consolidates long-term reasoning into the short-horizon planning. We empirically evaluate our approach in contact-rich manipulation tasks both in simulated and real environments, such as peg insertion by a real PR2 robot.

Original languageEnglish
Title of host publicationICRA 2017 - IEEE International Conference on Robotics and Automation
Pages336-343
Number of pages8
ISBN (Electronic)9781509046331
DOIs
StatePublished - 21 Jul 2017
Externally publishedYes
Event2017 IEEE International Conference on Robotics and Automation, ICRA 2017 - Singapore, Singapore
Duration: 29 May 20173 Jun 2017

Publication series

NameProceedings - IEEE International Conference on Robotics and Automation

Conference

Conference2017 IEEE International Conference on Robotics and Automation, ICRA 2017
Country/TerritorySingapore
CitySingapore
Period29/05/173/06/17

All Science Journal Classification (ASJC) codes

  • Software
  • Control and Systems Engineering
  • Artificial Intelligence
  • Electrical and Electronic Engineering

Fingerprint

Dive into the research topics of 'Learning from the hindsight plan - Episodic MPC improvement'. Together they form a unique fingerprint.

Cite this