TY - GEN
T1 - Learning from the hindsight plan - Episodic MPC improvement
AU - Tamar, Aviv
AU - Thomas, Garrett
AU - Zhang, Tianhao
AU - Levine, Sergey
AU - Abbeel, Pieter
N1 - Publisher Copyright: © 2017 IEEE.
PY - 2017/7/21
Y1 - 2017/7/21
N2 - Model predictive control (MPC) is a popular control method that has proved effective for robotics, among other fields. MPC performs re-planning at every time step. Re-planning is done with a limited horizon per computational and real-time constraints and often also for robustness to potential model errors. However, the limited horizon leads to suboptimal performance. In this work, we consider the iterative learning setting, where the same task can be repeated several times, and propose a policy improvement scheme for MPC. The main idea is that between executions we can, offline, run MPC with a longer horizon, resulting in a hindsight plan. To bring the next real-world execution closer to the hindsight plan, our approach learns to re-shape the original cost function with the goal of satisfying the following property: short horizon planning (as realistic during real executions) with respect to the shaped cost should result in mimicking the hindsight plan. This effectively consolidates long-term reasoning into the short-horizon planning. We empirically evaluate our approach in contact-rich manipulation tasks both in simulated and real environments, such as peg insertion by a real PR2 robot.
AB - Model predictive control (MPC) is a popular control method that has proved effective for robotics, among other fields. MPC performs re-planning at every time step. Re-planning is done with a limited horizon per computational and real-time constraints and often also for robustness to potential model errors. However, the limited horizon leads to suboptimal performance. In this work, we consider the iterative learning setting, where the same task can be repeated several times, and propose a policy improvement scheme for MPC. The main idea is that between executions we can, offline, run MPC with a longer horizon, resulting in a hindsight plan. To bring the next real-world execution closer to the hindsight plan, our approach learns to re-shape the original cost function with the goal of satisfying the following property: short horizon planning (as realistic during real executions) with respect to the shaped cost should result in mimicking the hindsight plan. This effectively consolidates long-term reasoning into the short-horizon planning. We empirically evaluate our approach in contact-rich manipulation tasks both in simulated and real environments, such as peg insertion by a real PR2 robot.
UR - http://www.scopus.com/inward/record.url?scp=85028018260&partnerID=8YFLogxK
U2 - 10.1109/ICRA.2017.7989043
DO - 10.1109/ICRA.2017.7989043
M3 - منشور من مؤتمر
T3 - Proceedings - IEEE International Conference on Robotics and Automation
SP - 336
EP - 343
BT - ICRA 2017 - IEEE International Conference on Robotics and Automation
T2 - 2017 IEEE International Conference on Robotics and Automation, ICRA 2017
Y2 - 29 May 2017 through 3 June 2017
ER -