Learning Force Fields from Stochastic Trajectories

Anna Frishman, Pierre Ronceray

Research output: Contribution to journalArticlepeer-review

Abstract

When monitoring the dynamics of stochastic systems, such as interacting particles agitated by thermal noise, disentangling deterministic forces from Brownian motion is challenging. Indeed, we show that there is an information-theoretic bound, the capacity of the system when viewed as a communication channel, that limits the rate at which information about the force field can be extracted from a Brownian trajectory. This capacity provides an upper bound to the system's entropy production rate and quantifies the rate at which the trajectory becomes distinguishable from pure Brownian motion. We propose a practical and principled method, stochastic force inference, that uses this information to approximate force fields and spatially variable diffusion coefficients. It is data efficient, including in high dimensions, robust to experimental noise, and provides a self-consistent estimate of the inference error. In addition to forces, this technique readily permits the evaluation of out-of-equilibrium currents and the corresponding entropy production with a limited amount of data.

Original languageEnglish
Article number021009
JournalPhysical Review X
Volume10
Issue number2
DOIs
StatePublished - Jun 2020

All Science Journal Classification (ASJC) codes

  • General Physics and Astronomy

Fingerprint

Dive into the research topics of 'Learning Force Fields from Stochastic Trajectories'. Together they form a unique fingerprint.

Cite this