TY - GEN
T1 - Learning Broadcast Protocols
AU - Fisman, Dana
AU - Izsak, Noa
AU - Jacobs, Swen
N1 - Publisher Copyright: Copyright © 2024, Association for the Advancement of Artificial Intelligence (www.aaai.org). All rights reserved.
PY - 2024/3/25
Y1 - 2024/3/25
N2 - The problem of learning a computational model from examples has been receiving growing attention. For the particularly challenging problem of learning models of distributed systems, existing results are restricted to models with a fixed number of interacting processes. In this work we look for the first time (to the best of our knowledge) at the problem of learning a distributed system with an arbitrary number of processes, assuming only that there exists a cutoff, i.e., a number of processes that is sufficient to produce all observable behaviors. Specifically, we consider fine broadcast protocols, these are broadcast protocols (BPs) with a finite cutoff and no hidden states. We provide a learning algorithm that can infer a correct BP from a sample that is consistent with a fine BP, and a minimal equivalent BP if the sample is sufficiently complete. On the negative side we show that (a) characteristic sets of exponential size are unavoidable, (b) the consistency problem for fine BPs is NP hard, and (c) that fine BPs are not polynomially predictable.
AB - The problem of learning a computational model from examples has been receiving growing attention. For the particularly challenging problem of learning models of distributed systems, existing results are restricted to models with a fixed number of interacting processes. In this work we look for the first time (to the best of our knowledge) at the problem of learning a distributed system with an arbitrary number of processes, assuming only that there exists a cutoff, i.e., a number of processes that is sufficient to produce all observable behaviors. Specifically, we consider fine broadcast protocols, these are broadcast protocols (BPs) with a finite cutoff and no hidden states. We provide a learning algorithm that can infer a correct BP from a sample that is consistent with a fine BP, and a minimal equivalent BP if the sample is sufficiently complete. On the negative side we show that (a) characteristic sets of exponential size are unavoidable, (b) the consistency problem for fine BPs is NP hard, and (c) that fine BPs are not polynomially predictable.
UR - http://www.scopus.com/inward/record.url?scp=85189647339&partnerID=8YFLogxK
U2 - https://doi.org/10.1609/aaai.v38i11.29089
DO - https://doi.org/10.1609/aaai.v38i11.29089
M3 - Conference contribution
T3 - Proceedings of the AAAI Conference on Artificial Intelligence
SP - 12016
EP - 12023
BT - Technical Tracks 14
A2 - Wooldridge, Michael
A2 - Dy, Jennifer
A2 - Natarajan, Sriraam
T2 - 38th AAAI Conference on Artificial Intelligence, AAAI 2024
Y2 - 20 February 2024 through 27 February 2024
ER -