Leaf coordination between petiole vascular development and water demand in response to elevated CO2 in tomato plants

Itay Cohen, Juliana Espada Lichston, Cristiane Elizabeth Costa de Macêdo, Shimon Rachmilevitch

Research output: Contribution to journalArticlepeer-review

Abstract

The rise in atmospheric CO2 has a profound impact on plants physiology and performance. Stomatal gas exchange such as reduction in water loss via transpiration and higher photosynthetic rates are among the key plant physiological traits altered by the increase of CO2. Water acquired in plant roots is transported via the xylem vessels to the shoots. Under conditions of elevated CO2, water flux decreases due to higher water use efficiency and a decline in stomatal conductance. However, the mechanism by which the shoot vascular development is affected under elevated CO2 is still largely unclear in herbaceous crops. In the current study, tomato plants were exposed to either 400 or 800 ppm of CO2 and were analyzed for growth, leaf area, gas exchange rate, and petiole anatomy. Elevated CO2 caused a reduction in metaxylem vessel diameter, which in turn, decreased leaf theatrical conductivity by 400% as compared with plants grown under ambient CO2. This work links anatomical changes in the petioles to the rise in atmospheric CO2 and water use. Plant water demand declined under elevated CO2, while photosynthesis increased. Thus, the decrease in leaf specific conductivity was attributed to lower water consumption in leaf gas exchange and, by extension, to higher leaf water use efficiency. As the global climate changes and water scarcity becomes more common, such anatomical alterations caused by elevated CO2 may affect plant response to water limitation. Further research on petiole anatomical alterations under conditions of combined climate change factors such as drought and heat with elevated CO2 may assist in clarifying the responses expected by future climate scenarios.

Original languageEnglish
Article numbere371
JournalPlant Direct
Volume6
Issue number1
DOIs
StatePublished - 1 Jan 2022

All Science Journal Classification (ASJC) codes

  • Ecology, Evolution, Behavior and Systematics
  • Biochemistry, Genetics and Molecular Biology (miscellaneous)
  • Plant Science
  • Ecology

Fingerprint

Dive into the research topics of 'Leaf coordination between petiole vascular development and water demand in response to elevated CO2 in tomato plants'. Together they form a unique fingerprint.

Cite this