Laser-diode based 10MHz Photoacoustic Doppler Flowmetry at 830nm

Adi Sheinfeld, Avishay Eyal

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

Abstract

Photoacoustic Doppler Flowmetry has several potential advantages over its purely acoustical counterpart. The key ones are better inherent contrast and potential molecular information. It is therefore highly desired to continue to develop this modality into a viable complementary tool alongside with Doppler Ultrasound flowmetry. Working towards this goal we have constructed a Photoacoustic Doppler setup based on a combined pair of laser diodes at 830nm and a 10MHz focused acoustical transducer. Using tone-burst intensity modulation, depth-resolved Doppler spectrograms of a phantom vessel containing flowing suspension of carbon particles, were obtained. In order to investigate the conditions required for successful photoacoustic Doppler measurement in blood a k-space photoacoustic simulation was performed. It tested the photoacoustic response which is obtained for moving random spatial distributions of red blood cells and the effect of several parameters, such as particles density, ultrasonic frequency and optical spot size.

Original languageEnglish
Title of host publicationPhotons Plus Ultrasound
Subtitle of host publicationImaging and Sensing 2012
DOIs
StatePublished - 2012
EventPhotons Plus Ultrasound: Imaging and Sensing 2012 - San Francisco, CA, United States
Duration: 22 Jan 201224 Jan 2012

Publication series

NameProgress in Biomedical Optics and Imaging - Proceedings of SPIE
Volume8223

Conference

ConferencePhotons Plus Ultrasound: Imaging and Sensing 2012
Country/TerritoryUnited States
CitySan Francisco, CA
Period22/01/1224/01/12

Keywords

  • Doppler
  • Flow measurement
  • Photoacoustic imaging

All Science Journal Classification (ASJC) codes

  • Electronic, Optical and Magnetic Materials
  • Atomic and Molecular Physics, and Optics
  • Biomaterials
  • Radiology Nuclear Medicine and imaging

Fingerprint

Dive into the research topics of 'Laser-diode based 10MHz Photoacoustic Doppler Flowmetry at 830nm'. Together they form a unique fingerprint.

Cite this