Language Models of Code are Few-Shot Commonsense Learners

Aman Madaan, Shuyan Zhou, Uri Alon, Yiming Yang, Graham Neubig

Research output: Contribution to conferencePaperpeer-review

Abstract

We address the general task of structured commonsense reasoning: given a natural language input, the goal is to generate a graph such as an event or a reasoning-graph. To employ large language models (LMs) for this task, existing approaches “serialize” the output graph as a flat list of nodes and edges. Although feasible, these serialized graphs strongly deviate from the natural language corpora that LMs were pre-trained on, hindering LMs from generating them correctly. In this paper, we show that when we instead frame structured commonsense reasoning tasks as code generation tasks, pre-trained LMs of code are better structured commonsense reasoners than LMs of natural language, even when the downstream task does not involve source code at all. We demonstrate our approach across three diverse structured commonsense reasoning tasks. In all these natural language tasks, we show that using our approach, a code generation LM (CODEX) outperforms natural-LMs that are fine-tuned on the target task (e.g., T5) and other strong LMs such as GPT-3 in the few-shot setting. Our code and data are available at https://github.com/madaan/CoCoGen.

Original languageAmerican English
Pages1384-1403
Number of pages20
StatePublished - 2022
Externally publishedYes
Event2022 Conference on Empirical Methods in Natural Language Processing, EMNLP 2022 - Abu Dhabi, United Arab Emirates
Duration: 7 Dec 202211 Dec 2022

Conference

Conference2022 Conference on Empirical Methods in Natural Language Processing, EMNLP 2022
Country/TerritoryUnited Arab Emirates
CityAbu Dhabi
Period7/12/2211/12/22

All Science Journal Classification (ASJC) codes

  • Computational Theory and Mathematics
  • Computer Science Applications
  • Information Systems

Cite this