Abstract
We present the observations and analysis of a high-magnification microlensing planetary event, KMT-2022-BLG-0440, for which the weak and short-lived planetary signal was covered by both the KMTNet survey and follow-up observations. The binary-lens models with a central caustic provide the best fits, with a planet/host mass ratio, q = 0.75-1.00 × 10−4 at 1σ. The binary-lens models with a resonant caustic and a brown-dwarf mass ratio are both excluded by Δχ2 > 70. The binary-source model can fit the anomaly well but is rejected by the 'colour argument' on the second source. From Bayesian analyses, it is estimated that the host star is likely a K or M dwarf located in the Galactic disc, the planet probably has a Neptune-mass, and the projected planet-host separation is 1.9+0.6−0.7 or 4.6+1.4−1.7 au, subject to the close/wide degeneracy. This is the third q < 10−4 planet from a high-magnification planetary signal (A ≳ 65). Together with another such planet, KMT-2021-BLG-0171Lb, the ongoing follow-up program for the KMTNet high-magnification events has demonstrated its ability to detect high-magnification planetary signals for q < 10−4 planets, which are challenging for the current microlensing surveys.
Original language | English |
---|---|
Pages (from-to) | 6055-6069 |
Number of pages | 15 |
Journal | MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY |
Volume | 522 |
Issue number | 4 |
DOIs | |
State | Published - 1 Jul 2023 |
Keywords
- gravitational lensing: micro
- planets
- satellites: detection
All Science Journal Classification (ASJC) codes
- Astronomy and Astrophysics
- Space and Planetary Science