TY - GEN
T1 - Kernelization for Spreading Points
AU - Fomin, Fedor V.
AU - Golovach, Petr A.
AU - Inamdar, Tanmay
AU - Saurabh, Saket
AU - Zehavi, Meirav
N1 - Publisher Copyright: © Fedor V. Fomin, Petr A. Golovach, Tanmay Inamdar, Saket Saurabh, and Meirav Zehavi.
PY - 2023/9/1
Y1 - 2023/9/1
N2 - We consider the following problem about dispersing points. Given a set of points in the plane, the task is to identify whether by moving a small number of points by small distance, we can obtain an arrangement of points such that no pair of points is “close” to each other. More precisely, for a family of n points, an integer k, and a real number d > 0, we ask whether at most k points could be relocated, each point at distance at most d from its original location, such that the distance between each pair of points is at least a fixed constant, say 1. A number of approximation algorithms for variants of this problem, under different names like distant representatives, disk dispersing, or point spreading, are known in the literature. However, to the best of our knowledge, the parameterized complexity of this problem remains widely unexplored. We make the first step in this direction by providing a kernelization algorithm that, in polynomial time, produces an equivalent instance with O(d2k3) points. As a byproduct of this result, we also design a non-trivial fixed-parameter tractable (FPT) algorithm for the problem, parameterized by k and d. Finally, we complement the result about polynomial kernelization by showing a lower bound that rules out the existence of a kernel whose size is polynomial in k alone, unless NP ⊆ coNP /poly.
AB - We consider the following problem about dispersing points. Given a set of points in the plane, the task is to identify whether by moving a small number of points by small distance, we can obtain an arrangement of points such that no pair of points is “close” to each other. More precisely, for a family of n points, an integer k, and a real number d > 0, we ask whether at most k points could be relocated, each point at distance at most d from its original location, such that the distance between each pair of points is at least a fixed constant, say 1. A number of approximation algorithms for variants of this problem, under different names like distant representatives, disk dispersing, or point spreading, are known in the literature. However, to the best of our knowledge, the parameterized complexity of this problem remains widely unexplored. We make the first step in this direction by providing a kernelization algorithm that, in polynomial time, produces an equivalent instance with O(d2k3) points. As a byproduct of this result, we also design a non-trivial fixed-parameter tractable (FPT) algorithm for the problem, parameterized by k and d. Finally, we complement the result about polynomial kernelization by showing a lower bound that rules out the existence of a kernel whose size is polynomial in k alone, unless NP ⊆ coNP /poly.
KW - distant representatives
KW - kernelization
KW - parameterized algorithms
KW - spreading points
KW - unit disk packing
UR - http://www.scopus.com/inward/record.url?scp=85173536965&partnerID=8YFLogxK
U2 - https://doi.org/10.4230/LIPIcs.ESA.2023.48
DO - https://doi.org/10.4230/LIPIcs.ESA.2023.48
M3 - Conference contribution
T3 - Leibniz International Proceedings in Informatics, LIPIcs
BT - 31st Annual European Symposium on Algorithms, ESA 2023
A2 - Li Gortz, Inge
A2 - Farach-Colton, Martin
A2 - Puglisi, Simon J.
A2 - Herman, Grzegorz
PB - Schloss Dagstuhl- Leibniz-Zentrum fur Informatik GmbH, Dagstuhl Publishing
T2 - 31st Annual European Symposium on Algorithms, ESA 2023
Y2 - 4 September 2023 through 6 September 2023
ER -