TY - JOUR
T1 - Kepler Multitransiting System Physical Properties and Impact Parameter Variations
AU - Judkovsky, Yair
AU - Ofir, Aviv
AU - Aharonson, Oded
N1 - This study was supported by the Helen Kimmel Center for Planetary Sciences and the Minerva Center for Life Under Extreme Planetary Conditions No. 13599 at the Weizmann Institute of Science. This paper includes data collected by the Kepler mission and obtained from the MAST data archive at the Space Telescope Science Institute (STScI). Funding for the Kepler mission is provided by the NASA Science Mission Directorate. STScI is operated by the Association of Universities for Research in Astronomy, Inc., under NASA contract NAS 5-26555. The Kepler data used in this work can be found in MAST (STScI 2011). We thank the reviewers for their useful comments, which improved the quality of this work.
PY - 2024/3/1
Y1 - 2024/3/1
N2 - We fit a dynamical model to Kepler systems that contain four or more transiting planets using the analytic method AnalyticLC and obtain physical and orbital parameters for 101 planets in 23 systems, of which 95 are of mass significance better than 3σ, and 46 are without previously reported mass constraints or upper limits. In addition, we compile a list of 71 Kepler objects of interest that display significant transit impact parameter variations (TbVs), complementing our previously published work on two- and three-transiting-planet systems. Together, these works include the detection of significant TbV signals of 130 planets, which is, to our knowledge, the largest catalog of this type to date. The results indicate that the typical detectable TbV rate in the Kepler population is of order 10−2 yr−1 and that rapid TbV rates (≳0.05 yr−1) are observed only in systems that contain a transiting planet with an orbital period less than ∼20 days. The observed TbV rates are only weakly correlated with orbital period within Kepler’s ≲100-day-period planets. If this extends to longer periods, it implies a limit on the utility of the transit technique for long-period planets. The TbVs we find may not be detectable in direct impact parameter measurements, but rather are inferred from the full dynamics of the system, encoded in all types of transit variations. Finally, we find evidence that the mutual inclination distribution is qualitatively consistent with the previously suggested angular momentum deficit model using an independent approach.
AB - We fit a dynamical model to Kepler systems that contain four or more transiting planets using the analytic method AnalyticLC and obtain physical and orbital parameters for 101 planets in 23 systems, of which 95 are of mass significance better than 3σ, and 46 are without previously reported mass constraints or upper limits. In addition, we compile a list of 71 Kepler objects of interest that display significant transit impact parameter variations (TbVs), complementing our previously published work on two- and three-transiting-planet systems. Together, these works include the detection of significant TbV signals of 130 planets, which is, to our knowledge, the largest catalog of this type to date. The results indicate that the typical detectable TbV rate in the Kepler population is of order 10−2 yr−1 and that rapid TbV rates (≳0.05 yr−1) are observed only in systems that contain a transiting planet with an orbital period less than ∼20 days. The observed TbV rates are only weakly correlated with orbital period within Kepler’s ≲100-day-period planets. If this extends to longer periods, it implies a limit on the utility of the transit technique for long-period planets. The TbVs we find may not be detectable in direct impact parameter measurements, but rather are inferred from the full dynamics of the system, encoded in all types of transit variations. Finally, we find evidence that the mutual inclination distribution is qualitatively consistent with the previously suggested angular momentum deficit model using an independent approach.
U2 - 10.3847/1538-3881/ad16e2
DO - 10.3847/1538-3881/ad16e2
M3 - مقالة
SN - 0004-6256
VL - 167
JO - The Astronomical journal
JF - The Astronomical journal
IS - 3
M1 - 103
ER -