TY - JOUR
T1 - Jumps in Besov spaces and fine properties of Besov and fractional Sobolev functions
AU - Hashash, Paz
AU - Poliakovsky, Arkady
N1 - Publisher Copyright: © 2023, The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature.
PY - 2024/3/1
Y1 - 2024/3/1
N2 - In this paper we analyse functions in Besov spaces Bq,∞1/q(RN,Rd),q∈(1,∞) , and functions in fractional Sobolev spaces Wr,q(RN, Rd) , r∈ (0 , 1) , q∈ [1 , ∞) . We prove for Besov functions u∈Bq,∞1/q(RN,Rd) the summability of the difference between one-sided approximate limits in power q, | u+- u-| q , along the jump set Ju of u with respect to Hausdorff measure HN-1 , and establish the best bound from above on the integral ∫Ju|u+-u-|qdHN-1 in terms of Besov constants. We show for functions u∈Bq,∞1/q(RN,Rd),q∈(1,∞) that lim infε→0+1εN∫Bε(x)|u(z)-uBε(x)|qdz=0 for every x outside of a HN-1 -sigma finite set. For fractional Sobolev functions u∈ Wr,q(RN, Rd) we prove that limε→0+1εN∫Bε(x)1εN∫Bε(x)|u(z)-u(y)|qdzdy=0 for HN-rq a.e. x, where q∈ [1 , ∞) , r∈ (0 , 1) and rq≤ N . We prove for u∈ W1,q(RN) , 1 < q≤ N , that limε→0+1εN∫Bε(x)|u(z)-uBε(x)|qdz=0 for HN-q a.e. x∈ RN . In addition, we prove Lusin-type approximation for fractional Sobolev functions u∈ Wr,q(RN, Rd) by Hölder continuous functions in C,r(RN, Rd) .
AB - In this paper we analyse functions in Besov spaces Bq,∞1/q(RN,Rd),q∈(1,∞) , and functions in fractional Sobolev spaces Wr,q(RN, Rd) , r∈ (0 , 1) , q∈ [1 , ∞) . We prove for Besov functions u∈Bq,∞1/q(RN,Rd) the summability of the difference between one-sided approximate limits in power q, | u+- u-| q , along the jump set Ju of u with respect to Hausdorff measure HN-1 , and establish the best bound from above on the integral ∫Ju|u+-u-|qdHN-1 in terms of Besov constants. We show for functions u∈Bq,∞1/q(RN,Rd),q∈(1,∞) that lim infε→0+1εN∫Bε(x)|u(z)-uBε(x)|qdz=0 for every x outside of a HN-1 -sigma finite set. For fractional Sobolev functions u∈ Wr,q(RN, Rd) we prove that limε→0+1εN∫Bε(x)1εN∫Bε(x)|u(z)-u(y)|qdzdy=0 for HN-rq a.e. x, where q∈ [1 , ∞) , r∈ (0 , 1) and rq≤ N . We prove for u∈ W1,q(RN) , 1 < q≤ N , that limε→0+1εN∫Bε(x)|u(z)-uBε(x)|qdz=0 for HN-q a.e. x∈ RN . In addition, we prove Lusin-type approximation for fractional Sobolev functions u∈ Wr,q(RN, Rd) by Hölder continuous functions in C,r(RN, Rd) .
UR - http://www.scopus.com/inward/record.url?scp=85181494236&partnerID=8YFLogxK
U2 - https://doi.org/10.1007/s00526-023-02630-3
DO - https://doi.org/10.1007/s00526-023-02630-3
M3 - Article
SN - 0944-2669
VL - 63
JO - Calculus of Variations and Partial Differential Equations
JF - Calculus of Variations and Partial Differential Equations
IS - 2
M1 - 28
ER -