Abstract
In standard NLP pipelines, morphological analysis and disambiguation (MA&D) precedes syntactic and semantic downstream tasks. However, for languages with complex and ambiguous word-internal structure, known as morphologically rich languages (MRLs), it has been hypothesized that syntactic context may be crucial for accurate MA&D, and vice versa. In this work we empirically confirm this hypothesis for Modern Hebrew, an MRL with complex morphology and severe word-level ambiguity, in a novel transition-based framework. Specifically, we propose a joint morphosyntactic transition-based framework which formally unifies two distinct transition systems, morphological and syntactic, into a single transition-based system with joint training and joint inference. We empirically show that MA&D results obtained in the joint settings outperform MA&D results obtained by the respective standalone components, and that end-to-end parsing results obtained by our joint system present a new state of the art for Hebrew dependency parsing.
Original language | English |
---|---|
Pages (from-to) | 33-48 |
Number of pages | 16 |
Journal | Transactions of the Association for Computational Linguistics |
Volume | 7 |
DOIs | |
State | Published - 2019 |
All Science Journal Classification (ASJC) codes
- Communication
- Human-Computer Interaction
- Linguistics and Language
- Computer Science Applications
- Artificial Intelligence