ITEM2VEC: Neural item embedding for collaborative filtering

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

Abstract

Many Collaborative Filtering (CF) algorithms are item-based in the sense that they analyze item-item relations in order to produce item similarities. Recently, several works in the field of Natural Language Processing (NLP) suggested to learn a latent representation of words using neural embedding algorithms. Among them, the Skip-gram with Negative Sampling (SGNS), also known as word2vec, was shown to provide state-of-the-art results on various linguistics tasks. In this paper, we show that item-based CF can be cast in the same framework of neural word embedding. Inspired by SGNS, we describe a method we name item2vec for item-based CF that produces embedding for items in a latent space. The method is capable of inferring item-item relations even when user information is not available. We present experimental results that demonstrate the effectiveness of the item2vec method and show it is competitive with SVD.

Original languageEnglish
Title of host publication2016 IEEE International Workshop on Machine Learning for Signal Processing, MLSP 2016 - Proceedings
EditorsKostas Diamantaras, Aurelio Uncini, Francesco A. N. Palmieri, Jan Larsen
PublisherIEEE Computer Society
Number of pages6
ISBN (Electronic)9781509007462
DOIs
StatePublished - 8 Nov 2016
Externally publishedYes
Event26th IEEE International Workshop on Machine Learning for Signal Processing, MLSP 2016 - Proceedings - Vietri sul Mare, Salerno, Italy
Duration: 13 Sep 201616 Sep 2016

Publication series

NameIEEE International Workshop on Machine Learning for Signal Processing, MLSP
Volume2016-November

Conference

Conference26th IEEE International Workshop on Machine Learning for Signal Processing, MLSP 2016 - Proceedings
Country/TerritoryItaly
CityVietri sul Mare, Salerno
Period13/09/1616/09/16

Keywords

  • collaborative filtering
  • item recommendations
  • item similarity
  • item-item collaborative filtering
  • market basket analysis
  • neural word embedding
  • recommender systems
  • skip-gram
  • word2vec

All Science Journal Classification (ASJC) codes

  • Human-Computer Interaction
  • Signal Processing

Fingerprint

Dive into the research topics of 'ITEM2VEC: Neural item embedding for collaborative filtering'. Together they form a unique fingerprint.

Cite this