Is mathematical history written by the victors?

Jacques Bair, Piotr Błaszczyk, Robert Ely, Valérie Henry, Vladimir Kanovei, Karin U. Katz, Mikhail G. Katz, Semen S. Kutateladze, Thomas McGaffey, David M. Schaps, David Sherry, Steven Shnider

Research output: Contribution to journalArticlepeer-review

Abstract

We examine prevailing philosophical and historical views about the origin of infinitesimal mathematics in light of modern infinitesimal theories, and show the works of Fermat, Leibniz, Euler, Cauchy and other giants of infinitesimal mathematics in a new light. We also detail several procedures of the historical infinitesimal calculus that were only clarified and formalized with the advent of modern infinitesimals. These procedures include Fermat's adequality; Leibniz's law of continuity and the transcendental law of homogeneity; Euler's principle of cancellation and infinite integers with the associated infinite products; Cauchy's infinitesimal-based definition of continuity and "Dirac" delta function. Such procedures were interpreted and formalized in Robinson's framework in terms of concepts like microcontinuity (S-continuity), the standard part principle, the transfer principle, and hyperfinite products. We evaluate the critiques of historical and modern infinitesimals by their foes from Berkeley and Cantor to Bishop and Connes. We analyze the issue of the consistency, as distinct from the issue of the rigor, of historical infinitesimals, and contrast the methodologies of Leibniz and Nieuwentijt in this connection.
Original languageEnglish
Pages (from-to)886-904
Number of pages19
JournalNotices of the American Mathematical Society
Volume60
Issue number7
DOIs
StatePublished - Sep 2013

All Science Journal Classification (ASJC) codes

  • General Mathematics

Fingerprint

Dive into the research topics of 'Is mathematical history written by the victors?'. Together they form a unique fingerprint.

Cite this