Interactive proofs for verifying machine learning

Shafi Goldwasser, Guy N. Rothblum, Jonathan Shafer, Amir Yehudayoff

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

Abstract

We consider the following question: using a source of labeled data and interaction with an untrusted prover, what is the complexity of verifying that a given hypothesis is “approximately correct”? We study interactive proof systems for PAC verification, where a verifier that interacts with a prover is required to accept good hypotheses, and reject bad hypotheses. Both the verifier and the prover are efficient and have access to labeled data samples from an unknown distribution. We are interested in cases where the verifier can use significantly less data than is required for (agnostic) PAC learning, or use a substantially cheaper data source (e.g., using only random samples for verification, even though learning requires membership queries). We believe that today, when data and data-driven algorithms are quickly gaining prominence, the question of verifying purported outcomes of data analyses is very well-motivated. We show three main results. First, we prove that for a specific hypothesis class, verification is significantly cheaper than learning in terms of sample complexity, even if the verifier engages with the prover only in a single-round (NP-like) protocol. Moreover, for this class we prove that single-round verification is also significantly cheaper than testing closeness to the class. Second, for the broad class of Fourier-sparse boolean functions, we show a multi-round (IP-like) verification protocol, where the prover uses membership queries, and the verifier is able to assess the result while only using random samples. Third, we show that verification is not always more efficient. Namely, we show a class of functions where verification requires as many samples as learning does, up to a logarithmic factor.

Original languageEnglish
Title of host publication12th Innovations in Theoretical Computer Science Conference, ITCS 2021
EditorsJames R. Lee
PublisherSchloss Dagstuhl- Leibniz-Zentrum fur Informatik GmbH, Dagstuhl Publishing
Pages41:1-41:19
Number of pages19
ISBN (Electronic)9783959771771
DOIs
StatePublished - 1 Feb 2021
Event12th Innovations in Theoretical Computer Science Conference, ITCS 2021 - Virtual, Online
Duration: 6 Jan 20218 Jan 2021

Publication series

NameLeibniz International Proceedings in Informatics, LIPIcs
Volume185
ISSN (Print)1868-8969

Conference

Conference12th Innovations in Theoretical Computer Science Conference, ITCS 2021
CityVirtual, Online
Period6/01/218/01/21

Keywords

  • Complexity gaps
  • Complexity lower bounds
  • Distribution testing
  • Fourier analysis of boolean functions
  • Goldreich-levin algorithm
  • Kushilevitz-mansour algorithm
  • PAC learning

All Science Journal Classification (ASJC) codes

  • Software

Fingerprint

Dive into the research topics of 'Interactive proofs for verifying machine learning'. Together they form a unique fingerprint.

Cite this