TY - JOUR
T1 - Integrating in vitro and in silico approaches to evaluate the “dual functionality” of palmatine chloride in inhibiting and disassembling Tau-derived VQIVYK peptide fibrils
AU - Haj, Esraa
AU - Losev, Yelena
AU - Guru KrishnaKumar, V.
AU - Pichinuk, Edward
AU - Engel, Hamutal
AU - Raveh, Avi
AU - Gazit, Ehud
AU - Segal, Daniel
N1 - Publisher Copyright: © 2018 Elsevier B.V.
PY - 2018/7
Y1 - 2018/7
N2 - Background: Alzheimer's disease (AD) is the most common neurodegenerative disorder which is characterized by the deposits of intra-cellular tau protein and extra-cellular amyloid-β (Aβ) peptides in the human brain. Understanding the mechanism of protein aggregation and finding compounds that are capable of inhibiting its aggregation is considered to be highly important for disease therapy. Methods: We used an in vitro High-Throughput Screening for the identification of potent inhibitors of tau aggregation using a proxy model; a highly aggregation-prone hexapeptide fragment 306VQIVYK311 derived from tau. Using ThS fluorescence assay we screened a library of 2401 FDA approved, bio-active and natural compounds in attempt to find molecules which can efficiently modulate tau aggregation. Results: Among the screened compounds, palmatine chloride (PC) alkaloid was able to dramatically reduce the aggregation propensity of PHF6 at sub-molar concentrations. PC was also able to disassemble preformed aggregates of PHF6 and reduce the amyloid content in a dose-dependent manner. Insights obtained from MD simulation showed that PC interacted with the key residues of PHF6 responsible for β-sheet formation, which could likely be the mechanism of inhibition and disassembly. Furthermore, PC could effectively inhibit the aggregation of full-length tau and disassemble preformed aggregates. Conclusions: We found that PC possesses “dual functionality” towards PHF6 and full-length tau, i.e. inhibit their aggregation and disassemble pre-formed fibrils. General significance: The “dual functionality” of PC is valuable as a disease modifying strategy for AD, and other tauopathies, by inhibiting their progress and reducing the effect of fibrils already present in the brain.
AB - Background: Alzheimer's disease (AD) is the most common neurodegenerative disorder which is characterized by the deposits of intra-cellular tau protein and extra-cellular amyloid-β (Aβ) peptides in the human brain. Understanding the mechanism of protein aggregation and finding compounds that are capable of inhibiting its aggregation is considered to be highly important for disease therapy. Methods: We used an in vitro High-Throughput Screening for the identification of potent inhibitors of tau aggregation using a proxy model; a highly aggregation-prone hexapeptide fragment 306VQIVYK311 derived from tau. Using ThS fluorescence assay we screened a library of 2401 FDA approved, bio-active and natural compounds in attempt to find molecules which can efficiently modulate tau aggregation. Results: Among the screened compounds, palmatine chloride (PC) alkaloid was able to dramatically reduce the aggregation propensity of PHF6 at sub-molar concentrations. PC was also able to disassemble preformed aggregates of PHF6 and reduce the amyloid content in a dose-dependent manner. Insights obtained from MD simulation showed that PC interacted with the key residues of PHF6 responsible for β-sheet formation, which could likely be the mechanism of inhibition and disassembly. Furthermore, PC could effectively inhibit the aggregation of full-length tau and disassemble preformed aggregates. Conclusions: We found that PC possesses “dual functionality” towards PHF6 and full-length tau, i.e. inhibit their aggregation and disassemble pre-formed fibrils. General significance: The “dual functionality” of PC is valuable as a disease modifying strategy for AD, and other tauopathies, by inhibiting their progress and reducing the effect of fibrils already present in the brain.
KW - Aggregation modulator
KW - Amyloid
KW - High-Throughput Screening
KW - PHF6 peptide
KW - Palmatine
KW - Tau protein
UR - http://www.scopus.com/inward/record.url?scp=85045873003&partnerID=8YFLogxK
U2 - 10.1016/j.bbagen.2018.04.001
DO - 10.1016/j.bbagen.2018.04.001
M3 - مقالة
SN - 0304-4165
VL - 1862
SP - 1565
EP - 1575
JO - Biochimica et Biophysica Acta - General Subjects
JF - Biochimica et Biophysica Acta - General Subjects
IS - 7
ER -