TY - JOUR
T1 - Integrated metabolomics and proteomics of symptomatic and early pre-symptomatic states of colitis
AU - Shimshoni, Elee
AU - Ghini, Veronica
AU - Solomonov, Inna
AU - Luchinat, Claudio
AU - Sagi, Irit
AU - Turano, Paola
N1 - Authors retain copyright and choose from several distribution/reuse options under which to make the article available (CC BY, CC BY-NC, CC BY-ND, CC BY-NC-ND, CC0, or no reuse).
PY - 2020/3/23
Y1 - 2020/3/23
N2 - Two murine models for colitis were used to study multi-level changes and derive molecular signatures of colitis onset and development. By combining metabolomics data on tissues and fecal extracts with proteomics data on tissues, we provide a comprehensive picture of the metabolic profile of acute and chronic states of the disease, and most importantly, of two early pre-symptomatic states. We show that, increased anaerobic glycolysis, accompanied by altered TCA cycle and oxidative phosphorylation, associates with inflammation-induced hypoxia taking place in colon tissues. We also demonstrate significant changes in the metabolomic profiles of fecal extracts in different colitis states, most likely associated with the dysbiosis characteristic of colitis, as well as the dysregulated tissue metabolism. Most remarkably, strong and distinctive tissue and fecal metabolomic signatures can be detected before onset of symptoms. These results highlight the diagnostic potential of global metabolomics for inflammatory diseases.
AB - Two murine models for colitis were used to study multi-level changes and derive molecular signatures of colitis onset and development. By combining metabolomics data on tissues and fecal extracts with proteomics data on tissues, we provide a comprehensive picture of the metabolic profile of acute and chronic states of the disease, and most importantly, of two early pre-symptomatic states. We show that, increased anaerobic glycolysis, accompanied by altered TCA cycle and oxidative phosphorylation, associates with inflammation-induced hypoxia taking place in colon tissues. We also demonstrate significant changes in the metabolomic profiles of fecal extracts in different colitis states, most likely associated with the dysbiosis characteristic of colitis, as well as the dysregulated tissue metabolism. Most remarkably, strong and distinctive tissue and fecal metabolomic signatures can be detected before onset of symptoms. These results highlight the diagnostic potential of global metabolomics for inflammatory diseases.
U2 - 10.1101/2020.03.22.002196
DO - 10.1101/2020.03.22.002196
M3 - مقالة
SN - 2692-8205
JO - bioRxiv
JF - bioRxiv
ER -