Integral representation of channel flow with interacting particles

Itzhak Fouxon, Zhouyang Ge, Luca Brandt, Alexander Leshansky

Research output: Contribution to journalArticlepeer-review

Abstract

We construct a boundary integral representation for the low-Reynolds-number flow in a channel in the presence of freely suspended particles (or droplets) of arbitrary size and shape. We demonstrate that lubrication theory holds away from the particles at horizontal distances exceeding the channel height and derive a multipole expansion of the flow which is dipolar to the leading approximation. We show that the dipole moment of an arbitrary particle is a weighted integral of the stress and the flow at the particle surface, which can be determined numerically. We introduce the equation of motion that describes hydrodynamic interactions between arbitrary, possibly different, distant particles, with interactions determined by the product of the mobility matrix and the dipole moment. Further, the problem of three identical interacting spheres initially aligned in the streamwise direction is considered and the experimentally observed "pair exchange" phenomenon is derived analytically and confirmed numerically. For nonaligned particles, we demonstrate the formation of a configuration with one particle separating from a stable pair. Our results suggest that in a dilute initially homogenous particulate suspension flowing in a channel the particles will eventually separate into singlets and pairs.

Original languageEnglish
Article number063110
JournalPhysical Review B (Condensed Matter) (United States)
Volume96
Issue number6
DOIs
StatePublished - 13 Dec 2017

All Science Journal Classification (ASJC) codes

  • Statistical and Nonlinear Physics
  • Statistics and Probability
  • Condensed Matter Physics

Fingerprint

Dive into the research topics of 'Integral representation of channel flow with interacting particles'. Together they form a unique fingerprint.

Cite this