Inhibitory and excitatory mechanisms in the human cingulate-cortex support reinforcement learning: A functional Proton Magnetic Resonance Spectroscopy study

Vered Bezalel, Rony Paz, Assaf Tal

Research output: Contribution to journalArticlepeer-review

Abstract

The dorsal anterior cingulate cortex (dACC) is crucial for motivation, reward- and error-guided decision-making, yet its excitatory and inhibitory mechanisms remain poorly explored in humans. In particular, the balance between excitation and inhibition (E/I), demonstrated to play a role in animal studies, is difficult to measure in behaving humans. Here, we used functional magnetic-resonance-spectroscopy (1H-fMRS) to measure the brain's major inhibitory (GABA) and excitatory (Glutamate) neurotransmitters during reinforcement learning with three different conditions: high cognitive load (uncertainty); probabilistic discrimination learning; and a control null-condition. Participants learned to prefer the gain option in the discrimination phase and had no preference in the other conditions. We found increased GABA levels during the uncertainty condition, potentially reflecting recruitment of inhibitory systems during high cognitive load when trying to learn. Further, higher GABA levels during the null (baseline) condition correlated with improved discrimination learning. Finally, glutamate and GABA levels were correlated during high cognitive load. These results suggest that availability of dACC inhibitory resources enables successful learning. Our approach helps elucidate the potential contribution of the balance between excitation and inhibition to learning and motivation in behaving humans.
•GABA and Glutamate were measured in the dACC during learning.
•Learning included: cognitive-load, discrimination-learning and control conditions.
•Increased GABA levels were observed during high cognitive load.
•GABA levels during the control condition were correlated with better learning.
•Availability of dACC inhibitory resources enabled successful learning.
Original languageEnglish
Pages (from-to)25-35
Number of pages11
JournalNeuroImage (Orlando, Fla.)
Volume184
DOIs
StatePublished - 1 Jan 2019

Fingerprint

Dive into the research topics of 'Inhibitory and excitatory mechanisms in the human cingulate-cortex support reinforcement learning: A functional Proton Magnetic Resonance Spectroscopy study'. Together they form a unique fingerprint.

Cite this