Inheritance of associative memories and acquired cellular changes in C. elegans

Noa Deshe, Yifat Eliezer, Lihi Hoch, Eyal Itskovits, Eduard Bokman, Shachaf Ben-Ezra, Alon Zaslaver

Research output: Contribution to journalArticlepeer-review

Abstract

Experiences have been shown to modulate behavior and physiology of future generations in some contexts, but there is limited evidence for inheritance of associative memory in different species. Here, we trained C. elegans nematodes to associate an attractive odorant with stressful starvation conditions and revealed that this associative memory was transmitted to the F1 progeny who showed odor-evoked avoidance behavior. Moreover, the F1 and the F2 descendants of trained animals exhibited odor-evoked cellular stress responses, manifested by the translocation of DAF-16/FOXO to cells’ nuclei. Sperm, but not oocytes, transmitted these odor-evoked cellular stress responses which involved H3K9 and H3K36 methylations, the small RNA pathway machinery, and intact neuropeptide secretion. Activation of a single chemosensory neuron sufficed to induce a serotonin-mediated systemic stress response in both the parental trained generation and in its progeny. Moreover, inheritance of the cellular stress responses increased survival chances of the progeny as exposure to the training odorant allowed the animals to prepare in advance for an impending adversity. These findings suggest that in C. elegans associative memories and cellular changes may be transferred across generations.

Original languageEnglish
Article number4232
JournalNature Communications
Volume14
Issue number1
DOIs
StatePublished - Dec 2023

All Science Journal Classification (ASJC) codes

  • General Chemistry
  • General Biochemistry,Genetics and Molecular Biology
  • General Physics and Astronomy

Fingerprint

Dive into the research topics of 'Inheritance of associative memories and acquired cellular changes in C. elegans'. Together they form a unique fingerprint.

Cite this