Increased belowground tree carbon allocation in a mature mixed forest in a dry versus a wet year

Ido Rog, Boaz Hilman, Hagar Fox, David Yalin, Rafat Qubaja, Tamir Klein

Research output: Contribution to journalArticlepeer-review

Abstract

Tree species differ in their carbon (C) allocation strategies during environmental change. Disentangling species-specific strategies and contribution to the C balance of mixed forests requires observations at the individual tree level. We measured a complete set of C pools and fluxes at the tree level in five tree species, conifers and broadleaves, co-existing in a mature evergreen mixed Mediterranean forest. Our study period included a drought year followed by an above-average wet year, offering an opportunity to test the effect of water availability on tree C allocation. We found that in comparison to the wet year, C uptake was lower in the dry year, C use was the same, and allocation to belowground sinks was higher. Among the five major C sinks, respiration was the largest (ca. 60%), while root exudation (ca. 10%) and reproduction (ca. 2%) were those that increased the most in the dry year. Most trees relied on stored starch for maintaining a stable soluble sugars balance, but no significant differences were detected in aboveground storage between dry and wet years. The detailed tree-level analysis of nonstructural carbohydrates and δ13C dynamics suggest interspecific differences in C allocation among fluxes and tissues, specifically in response to the varying water availability. Overall, our findings shed light on mixed forest physiological responses to drought, an increasing phenomenon under the ongoing climate change.

Original languageEnglish
Article numbere17172
Number of pages15
JournalGlobal Change Biology
Volume30
Issue number2
DOIs
StatePublished - Feb 2024

All Science Journal Classification (ASJC) codes

  • Global and Planetary Change
  • Environmental Chemistry
  • Ecology
  • General Environmental Science

Fingerprint

Dive into the research topics of 'Increased belowground tree carbon allocation in a mature mixed forest in a dry versus a wet year'. Together they form a unique fingerprint.

Cite this