Abstract
Alpha-band (~10 Hz) neural oscillations, crucial for gating sensory information, may offer insights into the atypical sensory experiences characteristic of autism spectrum disorder (ASD). We investigated alpha-band EEG activity in autistic adults (n = 29) compared with a nonautistic group (n = 23) under various stimulus-driven and resting-state conditions. The autistic group showed consistently higher alpha amplitude across all time points. In addition, there was proportionally more suppression of alpha at stimulus onset in the autistic group, and alpha amplitude in this stimulus-onset period correlated with sensory behaviors. Recent research suggests a link between subcortical structures' volume and cortical alpha magnitude. Prompted by this, we explored the association between alpha power and the volume of subcortical structures and total cortical volume in ASD. Our findings indicate a significant correlation with total cortical volume and a group by hippocampal volume interaction, pointing to the potential role of anatomical structural characteristics as potential modulators of cortical alpha oscillations in ASD. Overall, the results highlight altered alpha in autistic individuals as potentially contributing to the heightened sensory symptoms in autistic compared with nonautistic adults.
Original language | American English |
---|---|
Journal | Autism Research |
DOIs | |
State | Accepted/In press - 1 Jan 2024 |
Externally published | Yes |
Keywords
- EEG
- alpha
- autism spectrum disorder
- sensory processing
- vision
All Science Journal Classification (ASJC) codes
- Clinical Neurology
- Genetics(clinical)
- General Neuroscience