In Vivo Plant Bio-Electrochemical Sensor Using Redox Cycling

Tali Dotan, Aakash Jog, Kian Kadan-Jamal, Adi Avni, Yosi Shacham-Diamand

Research output: Contribution to journalArticlepeer-review


This work presents an in vivo stem-mounted sensor for Nicotiana tabacum plants and an in situ cell suspension sensor for Solanum lycopersicum cells. Stem-mounted sensors are mechanically stable and less sensitive to plant and air movements than the previously demonstrated leaf-mounted sensors. Interdigitated-electrode-arrays with a dual working electrode configuration were used with an auxiliary electrode and an Ag/AgCl quasi-reference electrode. Signal amplification by redox cycling is demonstrated for a plant-based sensor responding to enzyme expression induced by different cues in the plants. Functional biosensing is demonstrated, first for constitutive enzyme expression and later, for heat-shock-induced enzyme expression in plants. In the cell suspension with redox cycling, positive detection of the enzyme β-glucuronidase (GUS) was observed within a few minutes after applying the substrate (pNPG, 4-Nitrophenyl β-D-glucopyranoside), following redox reactions of the product (p-nitrophenol (pNP)). It is assumed that the initial reaction is the irreversible reduction of pNP to p-hydroxylaminophenol. Next, it can be either oxidized to p-nitrosophenol or dehydrated and oxidized to aminophenol. Both last reactions are reversible and can be used for redox cycling. The dual-electrode redox-cycling electrochemical signal was an order of magnitude larger than that of conventional single-working electrode transducers. A simple model for the gain is presented, predicting that an even larger gain is possible for sub-micron electrodes. In summary, this work demonstrates, for the first time, a redox cycling-based in vivo plant sensor, where diffusion-based amplification occurs inside a tobacco plant’s tissue. The technique can be applied to other plants as well as to medical and environmental monitoring systems.

Original languageEnglish
Article number219
Issue number2
StatePublished - Feb 2023


  • electrochemical biosensing
  • heat shock plant sensor
  • in vivo plant sensors
  • plant-based functional sensor
  • redox cycling

All Science Journal Classification (ASJC) codes

  • Analytical Chemistry
  • Biotechnology
  • Biomedical Engineering
  • Instrumentation
  • Engineering (miscellaneous)
  • Clinical Biochemistry


Dive into the research topics of 'In Vivo Plant Bio-Electrochemical Sensor Using Redox Cycling'. Together they form a unique fingerprint.

Cite this