Abstract
We study fair division of indivisible chores among n agents with additive cost functions using the popular fairness notion of maximin share (MMS). Since MMS allocations do not always exist for more than two agents, the goal has been to improve its approximations and identify interesting special cases where MMS allocations exists. We show the existence of • 1-out-of-⌊119 n⌋ MMS allocations, which improves the state-of-the-art factor of 1-out-of-⌊34n⌋. • MMS allocations for factored instances, which resolves an open question posed by Ebadian et al. (2021). • 15/13-MMS allocations for personalized bivalued instances, improving the state-of-the-art factor of 13/11. We achieve these results by leveraging the HFFD algorithm of Huang and Lu (2021). Our approach also provides polynomial-time algorithms for computing an MMS allocation for factored instances and a 15/13-MMS allocation for personalized bivalued instances.
Original language | English |
---|---|
Pages (from-to) | 13881-13888 |
Number of pages | 8 |
Journal | Proceedings of the AAAI Conference on Artificial Intelligence |
Volume | 39 |
Issue number | 13 |
DOIs | |
State | Published - 11 Apr 2025 |
Event | 39th Annual AAAI Conference on Artificial Intelligence, AAAI 2025 - Philadelphia, United States Duration: 25 Feb 2025 → 4 Mar 2025 |
All Science Journal Classification (ASJC) codes
- Artificial Intelligence