TY - GEN
T1 - Improved bounds for testing Dyck languages
AU - Fischer, Eldar
AU - Magniez, Frédéric
AU - Starikovskaya, Tatiana
N1 - Publisher Copyright: © Copyright 2018 by SIAM.
PY - 2018
Y1 - 2018
N2 - In this paper we consider the problem of deciding membership in Dyck languages, a fundamental family of context-free languages, comprised of well-balanced strings of parentheses. In this problem we are given a string of length n in the alphabet of parentheses of m types and must decide if it is well-balanced. We consider this problem in the property testing setting, where one would like to make the decision while querying as few characters of the input as possible. Property testing of strings for Dyck language membership for m = 1, with a number of queries independent of the input size n, was provided in [Alon, Krivelevich, Newman and Szegedy, SICOMP 2001]. Property testing of strings for Dyck language membership for m 2 was first investigated in [Parnas, Ron and Rubinfeld, RSA 2003]. They showed an upper bound and a lower bound for distinguishing strings belonging to the language from strings that are far (in terms of the Hamming distance) from the language, which are respectively (up to polylogarithmic factors) the 2=3 power and the 1=11 power of the input size n. Here we improve the power of n in both bounds. For the upper bound, we introduce a recursion technique, that together with a refinement of the methods in the original work provides a test for any power of n larger than 2=5. For the lower bound, we introduce a new problem called Truestring Equivalence, which is easily reducible to the 2-type Dyck language property testing problem. For this new problem, we show a lower bound of n to the power of 1=5.
AB - In this paper we consider the problem of deciding membership in Dyck languages, a fundamental family of context-free languages, comprised of well-balanced strings of parentheses. In this problem we are given a string of length n in the alphabet of parentheses of m types and must decide if it is well-balanced. We consider this problem in the property testing setting, where one would like to make the decision while querying as few characters of the input as possible. Property testing of strings for Dyck language membership for m = 1, with a number of queries independent of the input size n, was provided in [Alon, Krivelevich, Newman and Szegedy, SICOMP 2001]. Property testing of strings for Dyck language membership for m 2 was first investigated in [Parnas, Ron and Rubinfeld, RSA 2003]. They showed an upper bound and a lower bound for distinguishing strings belonging to the language from strings that are far (in terms of the Hamming distance) from the language, which are respectively (up to polylogarithmic factors) the 2=3 power and the 1=11 power of the input size n. Here we improve the power of n in both bounds. For the upper bound, we introduce a recursion technique, that together with a refinement of the methods in the original work provides a test for any power of n larger than 2=5. For the lower bound, we introduce a new problem called Truestring Equivalence, which is easily reducible to the 2-type Dyck language property testing problem. For this new problem, we show a lower bound of n to the power of 1=5.
UR - http://www.scopus.com/inward/record.url?scp=85045562961&partnerID=8YFLogxK
U2 - https://doi.org/10.1137/1.9781611975031.100
DO - https://doi.org/10.1137/1.9781611975031.100
M3 - منشور من مؤتمر
T3 - Proceedings of the Annual ACM-SIAM Symposium on Discrete Algorithms
SP - 1529
EP - 1544
BT - 29th Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2018
A2 - Czumaj, Artur
T2 - 29th Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2018
Y2 - 7 January 2018 through 10 January 2018
ER -