Abstract
Focusing on diagonal linear networks as a model for understanding the implicit bias in underdetermined models, we show how the gradient descent step size can have a large qualitative effect on the implicit bias, and thus on generalization ability. In particular, we show how using large step size for non-centered data can change the implicit bias from a "kernel" type behavior to a "rich" (sparsity-inducing) regime — even when gradient flow, studied in previous works, would not escape the "kernel" regime. We do so by using dynamic stability, proving that convergence to dynamically stable global minima entails a bound on some weighted $1$-norm of the linear predictor, i.e. a "rich" regime. We prove this leads to good generalization in a sparse regression setting.
Original language | English |
---|---|
Pages (from-to) | 16270-16295 |
Number of pages | 26 |
Journal | Proceedings of Machine Learning Research |
Volume | 162 |
State | Published - 1 May 2022 |
Event | 39th International Conference on Machine Learning, ICML 2022 - Baltimore, United States Duration: 17 Jul 2022 → 23 Jul 2022 https://proceedings.mlr.press/v162/ |
All Science Journal Classification (ASJC) codes
- Artificial Intelligence
- Software
- Control and Systems Engineering
- Statistics and Probability