Abstract
We show that gradient descent on full width linear convolutional networks of depth L converges to a linear predictor related to the `2/L bridge penalty in the frequency domain. This is in contrast to fully connected linear networks, where regardless of depth, gradient descent converges to the `2 maximum margin solution.
Original language | English |
---|---|
Title of host publication | 32nd Conference on Neural Information Processing Systems, NeurIPS 2018 |
Pages | 9461-9471 |
Number of pages | 11 |
State | Published - 2018 |
Event | 32nd Conference on Neural Information Processing Systems, NeurIPS 2018 - Montreal, Canada Duration: 2 Dec 2018 → 8 Dec 2018 |
Conference
Conference | 32nd Conference on Neural Information Processing Systems, NeurIPS 2018 |
---|---|
Country/Territory | Canada |
City | Montreal |
Period | 2/12/18 → 8/12/18 |
All Science Journal Classification (ASJC) codes
- Computer Networks and Communications
- Information Systems
- Signal Processing