TY - JOUR
T1 - Impact of scion/rootstock reciprocal effects on metabolomics of fruit juice and phloem sap in grafted Citrus reticulata
AU - Tietel, Zipora
AU - Srivastava, Snehil
AU - Fait, Aaron
AU - Tel-Zur, Noemi
AU - Carmi, Nir
AU - Raveh, Eran
N1 - Publisher Copyright: © 2020 Tietel et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
PY - 2020/1/1
Y1 - 2020/1/1
N2 - Background Rootstock has a significant impact on plant growth and development, including fruit maturation. However, the existence of mutual interaction between scion and rootstock is often neglected. To explore the origin of different fruit quality traits in citrus, we studied the effect of rootstock and the reciprocal interaction between scion and rootstock of nine combinations; three mandarin varieties grafted on three different rootstocks. We analyzed the metabolic profile of juice via gas and liquid chromatography-mass spectrometry (GC-MS and LCMS, respectively). Additionally, we profiled phloem sap composition in the scion and the rootstock. Quality traits of fruit and their physio-chemical characteristics were also evaluated. Results For all three cultivars, rootstock was found to affect fruit yield and biochemical fruit quality parameters (sugar and acidity) in interactions with the scions. In mandarin juice, eight of 48 compounds (two primary and six secondary) were related directly to the rootstock, and another seven (one primary and six secondary) were interactively affected by scion and rootstock. In scion and rootstock sap, six and 14 of 53 and 55 primary metabolites, respectively, were directly affected by the rootstock, while 42 and 33 were affected by rootstock interactively with scion, respectively. Conclusion In this work, we show for the first time a reciprocal effect between rootstock and scion. Based on our results, the scion and rootstock interaction might be organ, distance or time dependent.
AB - Background Rootstock has a significant impact on plant growth and development, including fruit maturation. However, the existence of mutual interaction between scion and rootstock is often neglected. To explore the origin of different fruit quality traits in citrus, we studied the effect of rootstock and the reciprocal interaction between scion and rootstock of nine combinations; three mandarin varieties grafted on three different rootstocks. We analyzed the metabolic profile of juice via gas and liquid chromatography-mass spectrometry (GC-MS and LCMS, respectively). Additionally, we profiled phloem sap composition in the scion and the rootstock. Quality traits of fruit and their physio-chemical characteristics were also evaluated. Results For all three cultivars, rootstock was found to affect fruit yield and biochemical fruit quality parameters (sugar and acidity) in interactions with the scions. In mandarin juice, eight of 48 compounds (two primary and six secondary) were related directly to the rootstock, and another seven (one primary and six secondary) were interactively affected by scion and rootstock. In scion and rootstock sap, six and 14 of 53 and 55 primary metabolites, respectively, were directly affected by the rootstock, while 42 and 33 were affected by rootstock interactively with scion, respectively. Conclusion In this work, we show for the first time a reciprocal effect between rootstock and scion. Based on our results, the scion and rootstock interaction might be organ, distance or time dependent.
UR - http://www.scopus.com/inward/record.url?scp=85077765872&partnerID=8YFLogxK
U2 - 10.1371/journal.pone.0227192
DO - 10.1371/journal.pone.0227192
M3 - Article
C2 - 31923191
SN - 1932-6203
VL - 15
JO - PLoS ONE
JF - PLoS ONE
IS - 1
M1 - e0227192
ER -