TY - GEN
T1 - Imagic
T2 - 2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition, CVPR 2023
AU - Kawar, Bahjat
AU - Zada, Shiran
AU - Lang, Oran
AU - Tov, Omer
AU - Chang, Huiwen
AU - Dekel, Tali
AU - Mosseri, Inbar
AU - Irani, Michal
N1 - Publisher Copyright: © 2023 IEEE.
PY - 2023
Y1 - 2023
N2 - Text-conditioned image editing has recently attracted considerable interest. However, most methods are currently limited to one of the following: specific editing types (e.g., object overlay, style transfer), synthetically generated images, or requiring multiple input images of a common object. In this paper we demonstrate, for the very first time, the ability to apply complex (e.g., non-rigid) text-based semantic edits to a single real image. For example, we can change the posture and composition of one or multiple objects inside an image, while preserving its original characteristics. Our method can make a standing dog sit down, cause a bird to spread its wings, etc. - each within its single high-resolution user-provided natural image. Contrary to previous work, our proposed method requires only a single input image and a target text (the desired edit). It operates on real images, and does not require any additional inputs (such as image masks or additional views of the object). Our method, called Imagic, leverages a pre-trained text-to-image diffusion model for this task. It produces a text embedding that aligns with both the input image and the target text, while fine-tuning the diffusion model to capture the image-specific appearance. We demonstrate the quality and versatility of Imagic on numerous inputs from various domains, showcasing a plethora of high quality complex semantic image edits, all within a single unified framework. To better assess performance, we introduce TEdBench, a highly challenging image editing benchmark. We conduct a user study, whose findings show that human raters prefer Imagic to previous leading editing methods on TEdBench.
AB - Text-conditioned image editing has recently attracted considerable interest. However, most methods are currently limited to one of the following: specific editing types (e.g., object overlay, style transfer), synthetically generated images, or requiring multiple input images of a common object. In this paper we demonstrate, for the very first time, the ability to apply complex (e.g., non-rigid) text-based semantic edits to a single real image. For example, we can change the posture and composition of one or multiple objects inside an image, while preserving its original characteristics. Our method can make a standing dog sit down, cause a bird to spread its wings, etc. - each within its single high-resolution user-provided natural image. Contrary to previous work, our proposed method requires only a single input image and a target text (the desired edit). It operates on real images, and does not require any additional inputs (such as image masks or additional views of the object). Our method, called Imagic, leverages a pre-trained text-to-image diffusion model for this task. It produces a text embedding that aligns with both the input image and the target text, while fine-tuning the diffusion model to capture the image-specific appearance. We demonstrate the quality and versatility of Imagic on numerous inputs from various domains, showcasing a plethora of high quality complex semantic image edits, all within a single unified framework. To better assess performance, we introduce TEdBench, a highly challenging image editing benchmark. We conduct a user study, whose findings show that human raters prefer Imagic to previous leading editing methods on TEdBench.
KW - Image and video synthesis and generation
UR - http://www.scopus.com/inward/record.url?scp=85173933453&partnerID=8YFLogxK
U2 - 10.1109/CVPR52729.2023.00582
DO - 10.1109/CVPR52729.2023.00582
M3 - منشور من مؤتمر
T3 - Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition
SP - 6007
EP - 6017
BT - Proceedings - 2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition, CVPR 2023
PB - IEEE Computer Society
Y2 - 18 June 2023 through 22 June 2023
ER -