Image-Based CLIP-Guided Essence Transfer

Hila Chefer, Sagie Benaim, Roni Paiss, Lior Wolf

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

Abstract

We make the distinction between (i) style transfer, in which a source image is manipulated to match the textures and colors of a target image, and (ii) essence transfer, in which one edits the source image to include high-level semantic attributes from the target. Crucially, the semantic attributes that constitute the essence of an image may differ from image to image. Our blending operator combines the powerful StyleGAN generator and the semantic encoder of CLIP in a novel way that is simultaneously additive in both latent spaces, resulting in a mechanism that guarantees both identity preservation and high-level feature transfer without relying on a facial recognition network. We present two variants of our method. The first is based on optimization, while the second fine-tunes an existing inversion encoder to perform essence extraction. Through extensive experiments, we demonstrate the superiority of our methods for essence transfer over existing methods for style transfer, domain adaptation, and text-based semantic editing. Our code is available at: https://github.com/hila-chefer/TargetCLIP.

Original languageEnglish
Title of host publicationComputer Vision – ECCV 2022 - 17th European Conference, 2022, Proceedings
EditorsShai Avidan, Gabriel Brostow, Moustapha Cissé, Giovanni Maria Farinella, Tal Hassner
PublisherSpringer Science and Business Media Deutschland GmbH
Pages695-711
Number of pages17
ISBN (Print)9783031197772
DOIs
StatePublished - 2022
Event17th European Conference on Computer Vision, ECCV 2022 - Tel Aviv, Israel
Duration: 23 Oct 202227 Oct 2022

Publication series

NameLecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
Volume13673 LNCS

Conference

Conference17th European Conference on Computer Vision, ECCV 2022
Country/TerritoryIsrael
CityTel Aviv
Period23/10/2227/10/22

All Science Journal Classification (ASJC) codes

  • Theoretical Computer Science
  • General Computer Science

Fingerprint

Dive into the research topics of 'Image-Based CLIP-Guided Essence Transfer'. Together they form a unique fingerprint.

Cite this