Identifying Memorization of Diffusion Models Through p-Laplace Analysis

Jonathan Brokman, Amit Giloni, Omer Hofman, Roman Vainshtein, Hisashi Kojima, Guy Gilboa

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

Abstract

Diffusion models, today’s leading image generative models, estimate the score function, i.e. the gradient of the log probability of (perturbed) data samples, without direct access to the underlying probability distribution. This work investigates whether the estimated score function can be leveraged to compute higher-order differentials, namely p-Laplace operators. We show here these operators can be employed to identify memorized training data. We propose a numerical p-Laplace approximation based on the learned score functions, showing its effectiveness in identifying key features of the probability landscape. We analyze the structured case of Gaussian mixture models, and demonstrate the results carry-over to image generative models, where memorization identification based on the p-Laplace operator is performed for the first time.

Original languageAmerican English
Title of host publicationScale Space and Variational Methods in Computer Vision - 10th International Conference, SSVM 2025, Proceedings
EditorsTatiana A. Bubba, Romina Gaburro, Silvia Gazzola, Kostas Papafitsoros, Marcelo Pereyra, Carola-Bibiane Schönlieb
PublisherSpringer Science and Business Media Deutschland GmbH
Pages295-307
Number of pages13
ISBN (Print)9783031923654
DOIs
StatePublished - 1 Jan 2025
Event10th International Conference on Scale Space and Variational Methods in Computer Vision, SSVM 2025 - Dartington, United Kingdom
Duration: 18 May 202522 May 2025

Publication series

NameLecture Notes in Computer Science
Volume15667 LNCS

Conference

Conference10th International Conference on Scale Space and Variational Methods in Computer Vision, SSVM 2025
Country/TerritoryUnited Kingdom
CityDartington
Period18/05/2522/05/25

Keywords

  • Diffusion Models
  • Memorization
  • Score-function
  • p-laplace

All Science Journal Classification (ASJC) codes

  • Theoretical Computer Science
  • General Computer Science

Fingerprint

Dive into the research topics of 'Identifying Memorization of Diffusion Models Through p-Laplace Analysis'. Together they form a unique fingerprint.

Cite this