Abstract
Catalytic processes are largely dominated by transition-metal complexes. Main-group compounds that can mimic the behaviour of the transition-metal complexes are of great interest due to their potential to substitute or complement transition metals in catalysis. While a few main-group molecular centres were shown to activate dihydrogen via the oxidative addition process, catalytic hydrogenation using these species has remained challenging. Here we report the synthesis, isolation and full characterization of the geometrically constrained phosphenium cation with the 2,6-bis(o-carborano)pyridine pincer-type ligand. Notably, this cation can activate the H–H bond by oxidative addition to a single PIII cationic centre, producing a dihydrophosphonium cation. This phosphenium cation is also capable of catalysing hydrogenation reactions of C=C double bonds and fused aromatic systems, making it a main-group compound that can both activate H2 at a single molecular main-group centre and be used for catalytic hydrogenation. This finding shows the potential of main-group compounds, in particular phosphorus-based compounds, to serve as metallomimetic hydrogenation catalysts. (Figure presented.)
Original language | English |
---|---|
Pages (from-to) | 1261-1266 |
Number of pages | 6 |
Journal | Nature Chemistry |
Volume | 16 |
Issue number | 8 |
DOIs | |
State | Published - Aug 2024 |
All Science Journal Classification (ASJC) codes
- General Chemistry
- General Chemical Engineering