Abstract
Electroconductive textiles (e-Textiles) are vital in developing wearable sensors that preserve the comfort and characteristics of textiles. Among two-dimensional (2D) transition metal dichalcogenides (TMDs), considered a promising option for sensor applications, tungsten di-selenide (WSe2) homostructures have been used as humidity- and temperature-sensing materials for developing e-textiles, as mentioned in a first-of-its-kind report. Exfoliated chemical vapor deposition (CVD)-grown 2H-WSe2 nanosheets were dispersed in hydroalcoholic solutions using an amino-functionalized silane to improve dispersion. Acrylic thickener was added to create 2H-WSe2-based pastes, which were applied onto cotton using the knife-over-roll technique to obtain thin, flexible electroconductive coatings on textiles. Various characterization techniques confirmed the even distribution of 2D-WSe2-based coatings on fabrics and the maintenance of textile comfort and wearability. The conductivity of coated fabrics was measured at room temperature and ranged between 2.9 × 108 and 1.6 × 109 Ω sq−1. The WSe2-based textile sensors functioned well as resistance humidity detectors within 30–90% relative humidity (RH), revealing good repeatability and sensitivity after multiple exposure cycles. To a lesser extent, WSe2-based textile sensors act as temperature detectors within 20–60 °C with limited repeatability. The 2D-based textiles exhibited a quadratic dependence of resistance on temperature and a characteristic thermal hysteresis. This proposed strategy marks a significant milestone in developing scalable and flexible 2D TMD-based detectors with great potential for wearable sensing devices.
Original language | English |
---|---|
Article number | 752 |
Journal | Polymers |
Volume | 17 |
Issue number | 6 |
DOIs | |
State | Published - 12 Mar 2025 |
Keywords
- 2D materials
- electroconductive coatings
- environmental monitoring
- smart textiles
- textile finishing
- transition metal dichalcogenides
- tungsten di-selenide
- wearable sensors
All Science Journal Classification (ASJC) codes
- General Chemistry
- Polymers and Plastics