Huge tables and multicommodity flows are fixed-parameter tractable via unimodular integer Carathéodory

Research output: Contribution to journalArticlepeer-review

Abstract

The three-way table problem is to decide if there exists an l×m×n table satisfying given line sums, and find a table if yes. Recently, it was shown to be fixed-parameter tractable with parameters l,m. Here we extend this and show that the huge version of the problem, where the variable side n is encoded in binary, is also fixed-parameter tractable with parameters l,m. We also conclude that the huge multicommodity flow problem with a huge number of consumers is fixed-parameter tractable. One of our tools is a theorem about unimodular monoids which is of interest on its own right.

Original languageEnglish
Pages (from-to)207-214
Number of pages8
JournalJournal of Computer and System Sciences
Volume83
Issue number1
DOIs
StatePublished - 1 Feb 2017

Keywords

  • Bin packing
  • Cutting stock
  • Fixed-parameter tractable
  • Integer Carathéodory
  • Integer programming
  • Multicommodity flow
  • Multiway table
  • Totally unimodular

All Science Journal Classification (ASJC) codes

  • Theoretical Computer Science
  • Computer Networks and Communications
  • Computational Theory and Mathematics
  • Applied Mathematics

Fingerprint

Dive into the research topics of 'Huge tables and multicommodity flows are fixed-parameter tractable via unimodular integer Carathéodory'. Together they form a unique fingerprint.

Cite this