How Acidic Is Carbonic Acid?

Dina Pines, Julia Ditkovich, Tzach Mukra, Yifat Miller, Philip M. Kiefer, Snehasis Daschakraborty, James T. Hynes, Ehud Pines

Research output: Contribution to journalArticlepeer-review


Carbonic, lactic, and pyruvic acids have been generated in aqueous solution by the transient protonation of their corresponding conjugate bases by a tailor-made photoacid, the 6-hydroxy-1-sulfonate pyrene sodium salt molecule. A particular goal is to establish the pKa of carbonic acid H2CO3. The on-contact proton transfer (PT) reaction rate from the optically excited photoacid to the carboxylic bases was derived, with unprecedented precision, from time-correlated single-photon-counting measurements of the fluorescence lifetime of the photoacid in the presence of the proton acceptors. The time-dependent diffusion-assisted PT rate was analyzed using the Szabo-Collins-Kimball equation with a radiation boundary condition. The on-contact PT rates were found to follow the acidity order of the carboxylic acids: the stronger was the acid, the slower was the PT reaction to its conjugate base. The pKa of carbonic acid was found to be 3.49 ± 0.05 using both the Marcus and Kiefer-Hynes free energy correlations. This establishes H2CO3 as being 0.37 pKa units stronger and about 1 pKa unit weaker, respectively, than the physiologically important lactic and pyruvic acids. The considerable acid strength of intact carbonic acid indicates that it is an important protonation agent under physiological conditions.

Original languageEnglish
Pages (from-to)2440-2451
Number of pages12
JournalJournal of Physical Chemistry B
Issue number9
StatePublished - 17 Mar 2016
Externally publishedYes

All Science Journal Classification (ASJC) codes

  • Physical and Theoretical Chemistry
  • Surfaces, Coatings and Films
  • Materials Chemistry


Dive into the research topics of 'How Acidic Is Carbonic Acid?'. Together they form a unique fingerprint.

Cite this