Holography and superresolution

Vicente Micó, Zeev Zalevsky

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

Abstract

The capability of improving the spatial resolution of imaging systems is usually known as superresolution. Some methods provide improve resolution by playing with the imaging part of the system and without modifying the optical parameters of the imaging lenses. And others act over the geometry, shape and size of sampling pixels in the detection array. The former strategy allows optical superresolution while the latter provide geometrical superresolution. In this contribution, we will review the state of the art in optical superresolution approaches understood as the possibility to overcome the limited resolving power of imaging systems beyond the bounds imposed by Abbe's diffraction theory. The process can be understood as a synthetic aperture generation process in which the limited aperture of the imaging system becomes synthetically expanded allowing a higher cutoff frequency than in the conventional aperture. Special attention will be paid on holographic approaches due to its modern development and practical benefits in many optical fields.

Original languageEnglish
Title of host publicationImaging Systems and Applications, ISA 2013
DOIs
StatePublished - 2013
EventImaging Systems and Applications, ISA 2013 - Arlington, VA, United States
Duration: 23 Jun 201327 Jun 2013

Publication series

NameOptics InfoBase Conference Papers

Conference

ConferenceImaging Systems and Applications, ISA 2013
Country/TerritoryUnited States
CityArlington, VA
Period23/06/1327/06/13

All Science Journal Classification (ASJC) codes

  • Instrumentation
  • Atomic and Molecular Physics, and Optics

Fingerprint

Dive into the research topics of 'Holography and superresolution'. Together they form a unique fingerprint.

Cite this