History Binding Signature: (Extended Abstract)

Shlomi Dolev, Matan Liber

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

Abstract

Digital signatures are used to verify the authenticity of digital messages, that is, to know with a high level of certainty, that a digital message was created by a known sender and was not altered in any way. This is usually achieved by using asymmetric cryptography, where a secret key is used by the signer, and the corresponding public key is used by those who wish to verify the signed data. In many use-cases, such as blockchain, the history and order of the signed data, thus the signatures themselves, are important. In blockchains specifically, the threat is forks, where one can double-spend its crypto-currency if one succeeds to publish two valid transactions on two different branches of the chain. We introduce a single private/public key pair signature scheme using verifiable random function, that binds a signer to its signature history. The scheme enforces a single ordered signatures’ history using a deterministic verifiable chain of signature functions that also reveals the secret key in case of misbehaviors.

Original languageAmerican English
Title of host publicationCyber Security Cryptography and Machine Learning - 5th International Symposium, CSCML 2021, Proceedings
EditorsShlomi Dolev, Oded Margalit, Benny Pinkas, Alexander Schwarzmann
PublisherSpringer Science and Business Media Deutschland GmbH
Pages221-229
Number of pages9
ISBN (Print)9783030780852
DOIs
StatePublished - 1 Jul 2021
Event5th International Symposium on Cyber Security Cryptography and Machine Learning, CSCML 2021 - Be'er Sheva, Israel
Duration: 8 Jul 20219 Jul 2021

Publication series

NameLecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
Volume12716 LNCS

Conference

Conference5th International Symposium on Cyber Security Cryptography and Machine Learning, CSCML 2021
Country/TerritoryIsrael
CityBe'er Sheva
Period8/07/219/07/21

Keywords

  • Digital signature
  • Verifiable random function
  • Verifiable secret sharing

All Science Journal Classification (ASJC) codes

  • Theoretical Computer Science
  • General Computer Science

Fingerprint

Dive into the research topics of 'History Binding Signature: (Extended Abstract)'. Together they form a unique fingerprint.

Cite this