Highly Controlled Zigzag Perovskite Nanocrystals Enabled by Dipole-Induced Self-Assembly of Nanocubes for Low-Threshold Amplified Spontaneous Emission and Lasing

Chengxi Zhang, Jiayi Chen, Lyudmila Turyanska, Junhui Wang, Weihua Wang, Lin Wang, Lingmei Kong, Kaifeng Wu, Jisong Yao, Hongbin Yao, Zhiwen Yang, Wanwan Li, Yehonadav Bekenstein, Yue Wang, Guohua Jia, Xuyong Yang

Research output: Contribution to journalArticlepeer-review

Abstract

Self-assembly of nanocrystals into controlled structures while uncompromising their properties is one of the key steps in optoelectronic device fabrication. Herein, zigzag CsPbBr3 perovskite nanocrystals are demonstrated with a precise number of components with nanocube morphology, these can be successfully obtained through a dipole-induced self-assembly process. The addition of a trace amount of deionized water facilitates the transfer from CsPbBr3 nanocubes to intermediates of CsPb2Br5 and Cs3In2Br9, which then fastly release reaction monomers leading to further homogenous nucleation of CsPbBr3 nanocubes, followed by the formation of zigzag CsPbBr3 nanocrystals through a dipole-induced self-assembly process. Dipole moment along <110> axis is found to be the driving force for the assembly of nanocubes into zigzag nanocrystals. The zigzag CsPbBr3 nanocrystals exhibit desirable optical properties comparable to their nanocube counterparts and offer advantages for amplified spontaneous emission and lasing applications with low pump thresholds of 3.1 and 6.02 µJ cm−2, respectively. This study not only develops a strategy for producing highly controlled zigzag perovskite nanocrystals and provides insights on the dipole-induced self-assembly mechanisms, but also opens an avenue for their application in lasing.

Original languageEnglish
Article number2211466
JournalAdvanced Functional Materials
Volume33
Issue number3
DOIs
StatePublished - 16 Jan 2023

Keywords

  • amplified spontaneous emissions
  • dipole-induced self-assemblies
  • lasing
  • optical properties
  • zigzag perovskite nanocrystals

All Science Journal Classification (ASJC) codes

  • Electronic, Optical and Magnetic Materials
  • Condensed Matter Physics
  • General Chemistry
  • General Materials Science
  • Electrochemistry
  • Biomaterials

Fingerprint

Dive into the research topics of 'Highly Controlled Zigzag Perovskite Nanocrystals Enabled by Dipole-Induced Self-Assembly of Nanocubes for Low-Threshold Amplified Spontaneous Emission and Lasing'. Together they form a unique fingerprint.

Cite this