Abstract
Half-Heusler (HH) High entropy alloy (HEA) MNiSn (M=Ti,Zr,Hf) with addition of Al and Sc in the M sub-lattice was studied. The micro-structure of (Ti0.33Zr0.33Hf0.33Al0.005Sc0.005)NiSn compound was examined and its transport properties were measured. The measurements showed the improvement of ~40% in the thermoelectric figure of merit in comparison with a similar composition of (Ti0.3Zr0.35Hf0.35)NiSn without Al and Sc. The thermodynamic stability of the alloy was examined using the HEA methodology, including a new proposed HEA parameter for multi-component alloying in only one sub-lattice of the compound. Ab-initio density functional theory (DFT) calculations were carried out to obtain the binary interaction parameters between the components in the sub-lattice of M atoms. The thermodynamic stability of the alloy as a function of the atomic fraction of the elements occupying the same sub-lattice in the compound is analyzed using the new HEA parameter.
Original language | American English |
---|---|
Article number | 159940 |
Journal | Journal of Alloys and Compounds |
Volume | 874 |
DOIs | |
State | Published - 5 Sep 2021 |
All Science Journal Classification (ASJC) codes
- Mechanics of Materials
- Mechanical Engineering
- Metals and Alloys
- Materials Chemistry