TY - GEN
T1 - Hierarchical functional encryption
AU - Brakerski, Zvika
AU - Chandran, Nishanth
AU - Goyal, Vipul
AU - Jain, Aayush
AU - Sahai, Amit
AU - Segev, Gil
N1 - Funding Information: ∗ In this extended abstract we present results from [23] and [25]. † Z. Brakerski is supported by the Israel Science Foundation (Grant No. 468/14), the Alon Young Faculty Fellowship, Binational Science Foundation (Grant No. 712307) and Google Faculty Research Award. A. Sahai and A. Jain are supported in part from a DARPA/ARL SAFEWARE award, NSF Frontier Award 1413955, NSF grants 1619348, 1228984, 1136174, and 1065276, a Xerox Faculty Research Award, a Google Faculty Research Award, an equipment grant from Intel, and an Okawa Foundation Research Grant. This material is based upon work supported by the Defense Advanced Research Projects Agency through the ARL under Contract W911NF-15-C-0205. The views expressed are those of the author and do not reflect the official policy or position of the Department of Defense, the National Science Foundation, or the U.S. Government. G. Segev is supported by the European Union’s 7th Framework Program (FP7) via a Marie Curie Career Integration Grant, by the Israel Science Foundation (Grant No. 483/13), by the Israeli Centers of Research Excellence (I-CORE) Program (Center No. 4/11), by the US-Israel Binational Science Foundation (Grant No. 2014632), and by a Google Faculty Research Award. Funding Information: Z. Brakerski is supported by the Israel Science Foundation (Grant No. 468/14), the Alon Young Faculty Fellowship, Binational Science Foundation (Grant No. 712307) and Google Faculty Research Award. A. Sahai and A. Jain are supported in part from a DARPA/ARL SAFEWARE award, NSF Frontier Award 1413955, NSF grants 1619348, 1228984, 1136174, and 1065276
PY - 2017/11/28
Y1 - 2017/11/28
N2 - Functional encryption provides fine-grained access control for encrypted data, allowing each user to learn only specific functions of the encrypted data. We study the notion of hierarchical functional encryption, which augments functional encryption with delegation capabilities, offering significantly more expressive access control. We present a generic transformation that converts any general-purpose public-key functional encryption scheme into a hierarchical one without relying on any additional assumptions. This significantly refines our understanding of the power of functional encryption, showing that the existence of functional encryption is equivalent to that of its hierarchical generalization. Instantiating our transformation with the existing functional encryption schemes yields a variety of hierarchical schemes offering various trade-offs between their delegation capabilities (i.e., the depth and width of their hierarchical structures) and underlying assumptions. When starting with a scheme secure against an unbounded number of collusions, we can support arbitrary hierarchical structures. In addition, even when starting with schemes that are secure against a bounded number of collusions (which are known to exist under rather minimal assumptions such as the existence of public-key encryption and shallow pseudorandom generators), we can support hierarchical structures of bounded depth and width.
AB - Functional encryption provides fine-grained access control for encrypted data, allowing each user to learn only specific functions of the encrypted data. We study the notion of hierarchical functional encryption, which augments functional encryption with delegation capabilities, offering significantly more expressive access control. We present a generic transformation that converts any general-purpose public-key functional encryption scheme into a hierarchical one without relying on any additional assumptions. This significantly refines our understanding of the power of functional encryption, showing that the existence of functional encryption is equivalent to that of its hierarchical generalization. Instantiating our transformation with the existing functional encryption schemes yields a variety of hierarchical schemes offering various trade-offs between their delegation capabilities (i.e., the depth and width of their hierarchical structures) and underlying assumptions. When starting with a scheme secure against an unbounded number of collusions, we can support arbitrary hierarchical structures. In addition, even when starting with schemes that are secure against a bounded number of collusions (which are known to exist under rather minimal assumptions such as the existence of public-key encryption and shallow pseudorandom generators), we can support hierarchical structures of bounded depth and width.
KW - Fuctional encryption
UR - http://www.scopus.com/inward/record.url?scp=85038561897&partnerID=8YFLogxK
U2 - https://doi.org/10.4230/LIPIcs.ITCS.2017.8
DO - https://doi.org/10.4230/LIPIcs.ITCS.2017.8
M3 - منشور من مؤتمر
T3 - Leibniz International Proceedings in Informatics, LIPIcs
BT - 8th Innovations in Theoretical Computer Science Conference, ITCS 2017
A2 - Papadimitriou, Christos H.
PB - Schloss Dagstuhl- Leibniz-Zentrum fur Informatik GmbH, Dagstuhl Publishing
T2 - 8th Innovations in Theoretical Computer Science Conference, ITCS 2017
Y2 - 9 January 2017 through 11 January 2017
ER -