Heterotrophic Nitrogen Fixation at the Hyper-Eutrophic Qishon River and Estuary System

Eyal Geisler, Anne Bogler, Edo Bar-Zeev, Eyal Rahav

Research output: Contribution to journalArticlepeer-review

Abstract

Planktonic heterotrophic diazotrophs (N2-fixers) are widely distributed in marine and freshwater systems, yet limited information is available on their activity, especially in environments with adverse conditions for diazotrophy (e.g., N-rich and oxygenated). Here, we followed the localization and activity of heterotrophic diazotrophs in the hyper-eutrophic N-rich Qishon River—an environment previously considered to be unfavorable for diazotrophy. Our results indicate high heterotrophic N2 fixation rates (up to 6.9 nmol N L–1 d–1), which were approximately three fold higher at an upstream location (freshwater) compared to an estuary (brackish) site. Further, active heterotrophic diazotrophs were capture associated with free-floating aggregates by a newly developed immunolocalization approach. These findings provide new insights on the activity of heterotrophic diazotrophs on aggregates in environments previously considered with adverse conditions for diazotrophy. Moreover, these new insights may be applicable to other aquatic regimes worldwide with similar N-rich/oxygenated conditions that should potentially inhibit N2 fixation.

Original languageAmerican English
Article number1370
JournalFrontiers in Microbiology
Volume11
DOIs
StatePublished - 24 Jun 2020

Keywords

  • N fixation
  • aggregates
  • estuary
  • nitrogenase immunolocalization
  • polysaccharides

All Science Journal Classification (ASJC) codes

  • Microbiology (medical)
  • Microbiology

Fingerprint

Dive into the research topics of 'Heterotrophic Nitrogen Fixation at the Hyper-Eutrophic Qishon River and Estuary System'. Together they form a unique fingerprint.

Cite this