Hemorrhage control by short electrical pulses: In vivo experiments

Ofer Barnea, Yossi Mandel

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

Abstract

An internal hemorrhagic shock is one of the leading causes of death in the battlefield and other trauma events. However the application of direct pressure, as in the treatment of an external hemorrhage, is not possible. Most common techniques to achieve vasoconstriction are through heat; yet heating causes irreversible destruction of organ tissues. Therefore, there is a need for a non-thermal based technology for hemorrhage control. The current research describes, for the first, an attempt to reduce the amount of bleeding in animal model liver injuries by using electrical pulses treatment (EPT). In the experiments, which were performed on 28 rats and 14 rabbits, a short (25μs and 50μs) EPT was applied to the treatment groups and the amount of bleeding was compared to the non-treatment (NT) groups. A reduction of 60%, 36% and 44% in blood volume, was found in the 25μs-rats, 50μs-rats and 25μs-rabbits EPT groups, respectively (P<0.001). Also, it was found that the hemorrhage control was not caused by the mechanical pressure applied by the electrodes, and there was no evidence for thermal coagulation. Further research is needed to fully expose the potential of this treatment and the modality for hemorrhage control in civilian and military settings.

Original languageEnglish
Title of host publicationBIODEVICES 2013 - Proceedings of the International Conference on Biomedical Electronics and Devices
Pages103-107
Number of pages5
StatePublished - 2013
EventInternational Conference on Biomedical Electronics and Devices, BIODEVICES 2013 - Barcelona, Spain
Duration: 11 Feb 201314 Feb 2013

Publication series

NameBIODEVICES 2013 - Proceedings of the International Conference on Biomedical Electronics and Devices

Conference

ConferenceInternational Conference on Biomedical Electronics and Devices, BIODEVICES 2013
Country/TerritorySpain
CityBarcelona
Period11/02/1314/02/13

Keywords

  • Electrical pulses
  • Hemorrhage control
  • Liver injury

All Science Journal Classification (ASJC) codes

  • Biomedical Engineering
  • Electrical and Electronic Engineering

Fingerprint

Dive into the research topics of 'Hemorrhage control by short electrical pulses: In vivo experiments'. Together they form a unique fingerprint.

Cite this