Heat Shock Factor 1-dependent extracellular matrix remodeling mediates the transition from chronic intestinal inflammation to colon cancer

Oshrat Levi-Galibov, Hagar Lavon, Rina Wassermann-Dozorets, Meirav Pevsner-Fischer, Shimrit Mayer, Esther Wershof, Yaniv Stein, Lauren E. Brown, Wenhan Zhang, Gil Friedman, Reinat Nevo, Ofra Golani, Lior H. Katz, Rona Yaeger, Ido Laish, John A. Porco, Erik Sahai, Dror S. Shouval, David Kelsen, Ruth Scherz-Shouval

Research output: Contribution to journalArticlepeer-review

Abstract

In the colon, long-term exposure to chronic inflammation drives colitis-associated colon cancer (CAC) in patients with inflammatory bowel disease. While the causal and clinical links are well established, molecular understanding of how chronic inflammation leads to the development of colon cancer is lacking. Here we deconstruct the evolving microenvironment of CAC by measuring proteomic changes and extracellular matrix (ECM) organization over time in a mouse model of CAC. We detect early changes in ECM structure and composition, and report a crucial role for the transcriptional regulator heat shock factor 1 (HSF1) in orchestrating these events. Loss of HSF1 abrogates ECM assembly by colon fibroblasts in cell-culture, prevents inflammation-induced ECM remodeling in mice and inhibits progression to CAC. Establishing relevance to human disease, we find high activation of stromal HSF1 in CAC patients, and detect the HSF1-dependent proteomic ECM signature in human colorectal cancer. Thus, HSF1-dependent ECM remodeling plays a crucial role in mediating inflammation-driven colon cancer.

Original languageEnglish
Article number6245
Number of pages19
JournalNature Communications
Volume11
Issue number1
DOIs
StatePublished - 7 Dec 2020

All Science Journal Classification (ASJC) codes

  • General Chemistry
  • General Biochemistry,Genetics and Molecular Biology
  • General Physics and Astronomy

Fingerprint

Dive into the research topics of 'Heat Shock Factor 1-dependent extracellular matrix remodeling mediates the transition from chronic intestinal inflammation to colon cancer'. Together they form a unique fingerprint.

Cite this