Abstract
Recent advancements in post-Quantum secure signing have revitalized interest in one-time signatures, such as Lamport’s, and their many signature extensions. Predominantly based on standard hash functions, these signatures avoid reliance on number theoretic assumptions. Existing methods utilize a commitment array, with de-commitment contingent on the hashed message’s representation bits. State-of-the-art variants incorporate pseudorandom functions. This study introduces a novel method utilizing a probabilistic “set membership data structure" derived from hash functions. It involves accessing a long array with k independent hash functions for each message, analogous to Bloom filters. This stateless signature scheme is adjustable to accommodate any pre-set maximum number of signatures by modulating the array’s length. The key concept is the partial loading of the de-committed array, ensuring validation of signed messages, non-validation of unsigned messages, and signature unforgeability (forgery equates to decommitment without the private key). This approach extends to improving one-time or bounded-message Constructions, like the Naor-Yung extension, for regular signature applications in the new Hash-Based Stateless Signature (HBSS) scheme.
Original language | American English |
---|---|
Journal | Cryptography and Communications |
DOIs | |
State | Accepted/In press - 1 Jan 2025 |
Keywords
- Cryptographic hash functions
- Hash-based signatures
- Post-quantum security
- Stateless signatures
All Science Journal Classification (ASJC) codes
- Computer Networks and Communications
- Computational Theory and Mathematics
- Applied Mathematics